login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329346
a(n) = A322356(A324886(n)).
1
1, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 7, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 19, 1, 1, 1, 1, 13, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 7, 1, 13, 1, 13, 1, 1, 1, 1, 13
OFFSET
1,8
FORMULA
a(n) = A322356(A324886(n)).
EXAMPLE
For n = 128 = 2^7, A108951(128) = A034386(2)^7 = 128. As 128 = 4 * 30 + 1*6 + 1* 2, A276086(128) = 36015 = 7^4 * 5^1 * 3^1, and there are two such primes that both p and p-2 divide n, and p-2 is also prime, namely, 7 and 5, thus a(128) = 7*5 = 35. This is also the first occurrence of composite number in this sequence.
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i, 1]+2)&&!(n%(f[i, 1]+2)), m *= (f[i, 1]+2))); (m); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2019
STATUS
approved