login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322356
Product of such primes p that both p and p-2 divide n, and p-2 is also prime.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35
OFFSET
1,15
COMMENTS
Product of those distinct greater twin primes (A006512) that divide n for which the corresponding lesser twin prime (A001359) also divides n.
FORMULA
a(n) = A322354(n) / A322357(n).
A001221(a(n)) = A001222(a(n)) = A322358(n).
EXAMPLE
For n = 105 = 3*5*7, a(105) = 5*7 = 35.
MATHEMATICA
f[p_, n_] := If[PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := Times @@ (f[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
PROG
(PARI) A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i, 1]+2)&&!(n%(f[i, 1]+2)), m *= (f[i, 1]+2))); (m); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 16 2018
STATUS
approved