login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119788
Ratio of the numerator of the product of n and the n-th alternating harmonic number n*H'(n) to the numerator of the n-th alternating harmonic number H'(n) = Sum_{k=1..n} (-1)^(k+1)*1/k.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
OFFSET
1,15
COMMENTS
Indices n such that a(n) is not equal to 1 are listed in A121594.
It appears that most a(n) > 1 are a prime divisor of their corresponding indices A121594(n). The first and only composite term up to a(6000) is a(1470) = 49 that also divides its index.
A compressed version of this sequence (all 1 entries are excluded) is A121595.
LINKS
FORMULA
a(n) = numerator(n*Sum_{i=1..n} (-1)^(i+1)*1/i) / numerator(Sum_{i=1..n}(-1)^(i+1)*1/i).
a(n) = A119787(n) / A058313(n).
MATHEMATICA
Numerator[Table[n*Sum[(-1)^(i+1)*1/i, {i, 1, n}], {n, 1, 600}]]/Numerator[Table[Sum[(-1)^(i+1)*1/i, {i, 1, n}], {n, 1, 600}]]
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 26 2006, Sep 21 2006
STATUS
approved