login
A119785
Numerator of the product of the n-th square pyramidal number and the n-th generalized harmonic number in power 2.
0
1, 25, 343, 1025, 57959, 488579, 266681, 18321733, 185784679, 21651619, 5507071447, 15632832085, 40799043101, 1187015026009, 6362282386111, 13990468150733, 238357395880861, 167890966963712483, 86364397717734821
OFFSET
1,2
COMMENTS
p^2 divides a(p-1) for prime p>3. p^2 divides a((p-1)/2) for prime p>3.
FORMULA
a(n) = numerator[Sum[i^2,{i,1,n}] * Sum[1/j^2,{j,1,n}]] = numerator[n(n+1)(2n+1)/6 * Sum[1/j^2,{j,1,n}]] = numerator[A000330(n) * ( A007406(n)/A007407(n) )]. Also a(n) = numerator[Sum[Sum[i^2/j^2, {i, 1, n}], {j, 1, n}]].
MATHEMATICA
Numerator[Table[n(n+1)(2n+1)/6*Sum[1/k^2, {k, 1, n}], {n, 1, 30}]]. Numerator[Table[Sum[Sum[i^2/j^2, {i, 1, n}], {j, 1, n}], {n, 1, 30}]].
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 25 2006
STATUS
approved