login
A278557
Expansion of Product_{n>=1} (1 - x^(5*n))^24/(1 - x^n)^25 in powers of x.
11
1, 25, 350, 3575, 29575, 209381, 1312075, 7443825, 38854075, 188836375, 862496902, 3729343275, 15356254650, 60511763600, 229125615600, 836555203223, 2953900713000, 10113407774450, 33649438734125, 109017926343725, 344525085375315, 1063718962906450
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1 - x^(5*n))^24/(1 - x^n)^25.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*A278556(n-2) + 5^10*6*a(n-3) + 5^12*A278558(n-4) for n >= 4.
a(n) ~ sqrt(101/15) * exp(Pi*sqrt(202*n/15)) / (976562500*n). - Vaclav Kotesovec, Nov 28 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^24/(1 - x^k)^25, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2016
STATUS
approved