login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278558 Expansion of Product_{n>=1} (1 - x^(5*n))^30/(1 - x^n)^31 in powers of x. 11
1, 31, 527, 6448, 63240, 526443, 3852742, 25380847, 153068700, 855816380, 4479330091, 22117432019, 103672066076, 463698703204, 1987628351600, 8195086588810, 32603090921532, 125497791966435, 468512597653134, 1699911932127300, 6005651320362628, 20693956328627358 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In general, if m>0 and g.f. = Product_{k>=1} (1 - x^(5*k))^m/(1 - x^k)^(m+1) then a(n) ~ sqrt(4*m+5) * exp(Pi*sqrt(2*(4*m+5)*n/15)) / (4*sqrt(3)*5^((m+1)/2)*n). - Vaclav Kotesovec, Nov 28 2016
LINKS
FORMULA
G.f.: Product_{n>=1} (1 - x^(5*n))^30/(1 - x^n)^31.
A278559(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*A278556(n-2) + 5^10*6*A278557(n-3) + 5^12*a(n-4) for n >= 4.
a(n) ~ exp(Pi*5*sqrt(2*n/3)) / (24414062500*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^30/(1 - x^k)^31, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
CROSSREFS
Sequence in context: A319427 A241888 A316457 * A022659 A038395 A261620
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 23 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)