login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278561
Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum k*k'/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = denominator of b(n).
2
2, 3, 10, 7, 252, 396, 6435, 858, 680680, 1175720, 5290740, 9360540, 1029659400, 617795640, 116454478140, 1061790830100, 283144221360, 74511637200, 14060345939640, 14060345939640, 109530094869795600, 650075097225840, 51193413906534900, 481218090721428060
OFFSET
1,1
LINKS
J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arithmetica 15.2 (1969): 181-187. See Eq. (21).
EXAMPLE
The fractions b(n) are 1/2, 4/3, 39/10, 52/7, 4069/252, 8573/396, 258017/6435, 46639/858, 53371999/680680, 113518551/1175720, 768140741/5290740, 1560819091/9360540, 242830653007/1029659400, 169134016817/617795640, 38186305937387/116454478140, ...
MAPLE
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
ans:=[];
for n from 1 to 30 do
t1:=denom(Farey(n));
t2:=add( t1[i]*t1[i+1]/(t1[i]+t1[i+1]), i=1..nops(t1)-1);
od:
ans;
map(numer, ans); # A278052
map(denom, ans); # A278561
CROSSREFS
Sequence in context: A333176 A338043 A141670 * A369991 A193729 A303115
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 23 2016
STATUS
approved