The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369991 Denominator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1). 5
 1, 2, 3, 10, 7, 572, 89148, 177918244665, 11711158115225119429452, 8990773234863161759100003096510729982749072312, 140048278006628885452600904137492554179859017924910241263151850844470542993943699969398879 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = denominator of Integral_{t=0..1} h_n(t) dt, where h_0 = 1, h_1 = T(h_0), h_2 = T(h_1), ...:[0,1]->[0,1], the operator T is given by T(g)(x) := Integral_{y=x..1} g^*(y) dy / Integral_{y=0..1} g(y)dy and g^*(y) := sup g^{-1}[y,1] (pseudo-inverse). Geometrically speaking, T rotates by 90 degrees before integrating, which is why we call h_0, h_1, h_2, ... the canonical stribolic iterates (from Greek stribo=turn/twist). Alternatively, a(n) can be calculated from the polynomial q_n := h_n ° ... ° h_1. Cf. alternative formula below. The sequence (a(n)/A369991(n)) is strictly decreasing and converges to the stribolic constant kappa=A369988. LINKS Roland Miyamoto, Table of n, a(n) for n = 0..14 Roland Miyamoto, Table of n, a(n) for n = 0..23 Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024. FORMULA a(0)=1, a(n) is the denominator of kappa_n := Integral_{t=0..1} h_n(t) dt where h_1(x):=1-x and h_{n+1}(x) := Integral_{t=x..1} h_n^*(t) dt / kappa_n for n=1,2,...; here, h_n^* denotes the compositional inverse of h_n. Alternatively, the rational sequence (kappa_n) := (A369990(n)/a(n)) and the two polynomial sequences (q_n), (Q_n) together are determined by the following equations for n=1,2,...: kappa_0=1, q_0=X, q_1=1-X, Q_n(0)=0, Q_n' = q_n'*q_{n-1}, kappa_n = (-1)^n * Q_n(1), q_{n+1} = (n+1) mod 2 - Q_n / kappa_n. EXAMPLE h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = - h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=3 and a(3)=10. PROG (Python) from functools import cache; from sympy.abc import x @cache def kappa(n): return (1-(n%2)*2) * Q(n).subs(x, 1) if n else 1 @cache def Q(n): return (q(n).diff() * q(n-1)).integrate() @cache def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x def denom(c): return c.denominator() if c%1 else 1 print([denom(kappa(n)) for n in range(15)]) CROSSREFS Cf. A369988 (decimal expansion of limit), A369990 (numerator). Cf. A369992, A369993. Sequence in context: A338043 A141670 A278561 * A193729 A303115 A074068 Adjacent sequences: A369987 A369988 A369990 * A369992 A369993 A369994 KEYWORD nonn,frac AUTHOR Roland Miyamoto, Feb 08 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 16:34 EDT 2024. Contains 373334 sequences. (Running on oeis4.)