The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369992 Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2). 5
 1, -1, 1, -3, 2, 5, -4, -35, 28, 70, -100, 35, 3575, -5720, -6292, 19240, -14300, 3520, -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The n-th row of the triangle contains 1 + A000045(n+1) - 2^floor(n/2) integers c_{2^floor(n/2)},...,c_{A000045(n+1)} forming a polynomial q_n = (n mod 2) + Sum_{i} c_i*X^i / A369993(n) that is related to A369990 and A369991 as follows: q_n = h_n ° ... ° h_1 (function composition), that is, h_n maps q_{n-1}(t) to q_n(t) for 0 <= t <= 1, and h_n has Integral_{x=0..1} h_n(x) dx = A369990(n)/A369991(n). The gcd of each row in the triangle equals 1. All previous statements are proved in the arXiv article, see link below. Observation: In each of the 25 rows computed so far, there are no zeros and at most two consecutive entries of the same sign. LINKS Roland Miyamoto, Table of n, a(n) for n = 0..1228 Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024. FORMULA The polynomials q_n = (n mod 2) + Sum_{k>=0} T(n,k)*X^(2^floor(n/2)+k) / A369993(n) are determined by the equations q_0=X, q_1=1-X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,... Sum_k T(n,k) = (-1)^n * A369993(n) for n=0,1,2,... EXAMPLE q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given): 1; -1; 1; -3, 2; 5, -4; -35, 28, 70, -100, 35; 3575, -5720, -6292, 19240, -14300, 3520; -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800; PROG (Python) from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci @cache def kappa(n): return (1-(n%2)*2) * Q(n).subs(x, 1) if n else 1 @cache def Q(n): return (q(n).diff() * q(n-1)).integrate() @cache def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x def denom(c): return c.denominator() if c%1 else 1 def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm, (denom(qn.coeff(x, k)) for k in range(k0, k1))); return [qn.coeff(x, k)*dn for k in range(k0, k1)] for n in range(15): print(row(n)) CROSSREFS A369993 (denominator). Cf. A369990, A369991, A369988. Sequence in context: A329544 A095006 A159587 * A124732 A167552 A094787 Adjacent sequences: A369988 A369990 A369991 * A369993 A369994 A369995 KEYWORD sign,tabf,frac AUTHOR Roland Miyamoto, Mar 01 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 10:07 EDT 2024. Contains 373329 sequences. (Running on oeis4.)