login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369992
Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).
5
1, -1, 1, -3, 2, 5, -4, -35, 28, 70, -100, 35, 3575, -5720, -6292, 19240, -14300, 3520, -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800
OFFSET
0,4
COMMENTS
The n-th row of the triangle contains 1 + A000045(n+1) - 2^floor(n/2) integers c_{2^floor(n/2)},...,c_{A000045(n+1)} forming a polynomial q_n = (n mod 2) + Sum_{i} c_i*X^i / A369993(n) that is related to A369990 and A369991 as follows: q_n = h_n ° ... ° h_1 (function composition), that is, h_n maps q_{n-1}(t) to q_n(t) for 0 <= t <= 1, and h_n has Integral_{x=0..1} h_n(x) dx = A369990(n)/A369991(n).
The gcd of each row in the triangle equals 1.
All previous statements are proved in the arXiv article, see link below.
Observation: In each of the 25 rows computed so far, there are no zeros and at most two consecutive entries of the same sign.
FORMULA
The polynomials q_n = (n mod 2) + Sum_{k>=0} T(n,k)*X^(2^floor(n/2)+k) / A369993(n) are determined by the equations q_0=X, q_1=1-X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,...
Sum_k T(n,k) = (-1)^n * A369993(n) for n=0,1,2,...
EXAMPLE
q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given):
1;
-1;
1;
-3, 2;
5, -4;
-35, 28, 70, -100, 35;
3575, -5720, -6292, 19240, -14300, 3520;
-13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800;
PROG
(Python)
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x, 1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator() if c%1 else 1
def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm, (denom(qn.coeff(x, k)) for k in range(k0, k1))); return [qn.coeff(x, k)*dn for k in range(k0, k1)]
for n in range(15): print(row(n))
CROSSREFS
A369993 (denominator).
Sequence in context: A329544 A095006 A159587 * A124732 A167552 A094787
KEYWORD
sign,tabf,frac
AUTHOR
Roland Miyamoto, Mar 01 2024
STATUS
approved