login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).
5

%I #18 Apr 21 2024 19:15:08

%S 1,-1,1,-3,2,5,-4,-35,28,70,-100,35,3575,-5720,-6292,19240,-14300,

%T 3520,-13856700,22170720,24387792,-74574240,217088300,-401631120,

%U -382444920,2019752592,-1656568485,-1470440400,3671101720,-2832601200,1025395800,-147804800

%N Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).

%C The n-th row of the triangle contains 1 + A000045(n+1) - 2^floor(n/2) integers c_{2^floor(n/2)},...,c_{A000045(n+1)} forming a polynomial q_n = (n mod 2) + Sum_{i} c_i*X^i / A369993(n) that is related to A369990 and A369991 as follows: q_n = h_n ° ... ° h_1 (function composition), that is, h_n maps q_{n-1}(t) to q_n(t) for 0 <= t <= 1, and h_n has Integral_{x=0..1} h_n(x) dx = A369990(n)/A369991(n).

%C The gcd of each row in the triangle equals 1.

%C All previous statements are proved in the arXiv article, see link below.

%C Observation: In each of the 25 rows computed so far, there are no zeros and at most two consecutive entries of the same sign.

%H Roland Miyamoto, <a href="/A369992/b369992.txt">Table of n, a(n) for n = 0..1228</a>

%H Roland Miyamoto, <a href="https://arxiv.org/abs/2402.06618">Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}</a>, arXiv:2402.06618 [math.CO], 2024.

%F The polynomials q_n = (n mod 2) + Sum_{k>=0} T(n,k)*X^(2^floor(n/2)+k) / A369993(n) are determined by the equations q_0=X, q_1=1-X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,...

%F Sum_k T(n,k) = (-1)^n * A369993(n) for n=0,1,2,...

%e q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given):

%e 1;

%e -1;

%e 1;

%e -3, 2;

%e 5, -4;

%e -35, 28, 70, -100, 35;

%e 3575, -5720, -6292, 19240, -14300, 3520;

%e -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800;

%o (Python)

%o from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci

%o @cache

%o def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1

%o @cache

%o def Q(n): return (q(n).diff() * q(n-1)).integrate()

%o @cache

%o def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x

%o def denom(c): return c.denominator() if c%1 else 1

%o def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm,(denom(qn.coeff(x,k)) for k in range(k0,k1))); return [qn.coeff(x,k)*dn for k in range(k0,k1)]

%o for n in range(15): print(row(n))

%Y A369993 (denominator).

%Y Cf. A369990, A369991, A369988.

%K sign,tabf,frac

%O 0,4

%A _Roland Miyamoto_, Mar 01 2024