OFFSET
0,6
COMMENTS
1/a(n) is the content of the polynomial q_n, whose (non-constant) numerator coefficients are given by A369992, that is, a(n)*q_n in Z[X] is primitive. (Proof in arXiv article, see link below.)
LINKS
Roland Miyamoto, Table of n, a(n) for n = 0..15
Roland Miyamoto, Table of n, a(n) for n = 0..24
Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024.
FORMULA
EXAMPLE
q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23.
Therefore, a(5)=2 and a(6)=23.
PROG
(Python)
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x, 1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator() if c%1 else 1
def A369993(n): return reduce(lcm, (denom(q(n).coeff(x, k)) for k in range(1<<(n>>1), 1+fibonacci(n+1))))
print([A369993(n) for n in range(15)])
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Roland Miyamoto, Mar 01 2024
STATUS
approved