The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369993 Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1). 5
 1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS 1/a(n) is the content of the polynomial q_n, whose (non-constant) numerator coefficients are given by A369992, that is, a(n)*q_n in Z[X] is primitive. (Proof in arXiv article, see link below.) LINKS Roland Miyamoto, Table of n, a(n) for n = 0..15 Roland Miyamoto, Table of n, a(n) for n = 0..24 Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024. FORMULA 1/a(n) = content of the polynomial q_n in Q[X] determined by the identities q_0 = X, q_1 = 1 - X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,... EXAMPLE q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23. Therefore, a(5)=2 and a(6)=23. PROG (Python) from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci @cache def kappa(n): return (1-(n%2)*2) * Q(n).subs(x, 1) if n else 1 @cache def Q(n): return (q(n).diff() * q(n-1)).integrate() @cache def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x def denom(c): return c.denominator() if c%1 else 1 def A369993(n): return reduce(lcm, (denom(q(n).coeff(x, k)) for k in range(1<<(n>>1), 1+fibonacci(n+1)))) print([A369993(n) for n in range(15)]) CROSSREFS Cf. A369992 (triangle of numerators). Cf. A369990, A369991, A369988. Sequence in context: A068656 A030997 A090511 * A114256 A110714 A067837 Adjacent sequences: A369990 A369991 A369992 * A369994 A369995 A369996 KEYWORD nonn,frac AUTHOR Roland Miyamoto, Mar 01 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 23:11 EDT 2024. Contains 372898 sequences. (Running on oeis4.)