login
A333176
a(n) = Sum_{k=1..n} (binomial(n,k) mod 2) * prime(k).
2
2, 3, 10, 7, 20, 23, 58, 19, 44, 51, 112, 63, 140, 151, 328, 53, 114, 117, 250, 131, 276, 287, 604, 161, 342, 355, 742, 383, 798, 825, 1720, 131, 270, 273, 566, 289, 596, 607, 1252, 323, 664, 675, 1392, 711, 1458, 1481, 3046, 407, 832, 839, 1718, 875, 1782
OFFSET
1,1
LINKS
FORMULA
Sum_{k=1..n} (-1)^A010060(n-k) * (binomial(n,k) mod 2) * a(k) = prime(n).
MAPLE
N:= 200: # for a(1) .. a(N)
P:= [seq(ithprime(i), i=1..N)]:
B:= [1, 1]: R:= 2:
for n from 2 to N do
B:= [1, op(B[2..-1]+B[1..-2] mod 2), 1];
R:= R, convert(P[select(t -> B[t+1] = 1, [$1..n])], `+`);
od:
R; # Robert Israel, Jan 29 2025
MATHEMATICA
Table[Sum[Mod[Binomial[n, k], 2] Prime[k], {k, 1, n}], {n, 1, 53}]
PROG
(PARI) a(n) = sum(k=1, n, if (binomial(n, k) % 2, prime(k))); \\ Michel Marcus, Mar 10 2020
CROSSREFS
KEYWORD
nonn,look,changed
AUTHOR
Ilya Gutkovskiy, Mar 10 2020
STATUS
approved