login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128531
a(n) = numerator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...r(n)] equals the n-th Fibonacci number, for every positive integer n.
3
1, 1, -2, 3, -10, 6, -65, 378, -5525, 16632, -1278485, 25147584, -1012815817, 8022079296, -2114837334805, 570081043090944, -60533314393713485, 1256458618972440576, -4540728540084435567025, 1677888660820605842036736, -466914087740138106185288665
OFFSET
1,3
FORMULA
For n>=4, r(n) = -F(n)/(F(n-3) r(n-1)), where F(n) is the n-th Fibonacci number.
EXAMPLE
The 5th Fibonacci number = 5 = 1 +1/(1 +1/(-2 +1/(3/2 -3/10))).
The 6th Fibonacci number = 8 = 1 +1/(1 +1/(-2 +1/(3/2 +1/(-10/3 +5/6)))).
MAPLE
L2cfrac := proc(L, targ) local a, i; a := targ ; for i from 1 to nops(L) do a := 1/(a-op(i, L)) ; od: end: A128531 := proc(nmax) local b, n, bnxt; b := [1] ; for n from nops(b)+1 to nmax do bnxt := L2cfrac(b, combinat[fibonacci](n+1)) ; b := [op(b), bnxt] ; od: [seq( numer(b[i]), i=1..nops(b))] ; end: A128531(22) ; # R. J. Mathar, Oct 09 2007
MATHEMATICA
r[n_] := r[n] = Switch[n, 1, 1, 2, 1, 3, -2, _, -Fibonacci[n]/(Fibonacci[n-3]*r[n-1])];
a[n_] := Numerator[r[n]];
Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Sep 24 2024 *)
CROSSREFS
Cf. A128532.
Sequence in context: A343936 A336091 A347835 * A123167 A333176 A338043
KEYWORD
frac,sign
AUTHOR
Leroy Quet, Mar 08 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved