login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128532
a(n) = denominator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...r(n)] equals the n-th Fibonacci number, for every positive integer n.
2
1, 1, 1, 2, 3, 5, 18, 325, 1512, 14365, 349272, 21734245, 276623424, 6933892901, 577589709312, 492757099009565, 16532350249637376, 1086038875887212525, 1240124656925798848512, 1450308695702968720107785
OFFSET
1,4
FORMULA
For n>=4, r(n) = -F(n)/(F(n-3) r(n-1)), where F(n) is the n-th Fibonacci number.
EXAMPLE
The 5th Fibonacci number = 5 = 1 +1/(1 +1/(-2 +1/(3/2 -3/10))).
The 6th Fibonacci number = 8 = 1 +1/(1 +1/(-2 +1/(3/2 +1/(-10/3 +5/6)))).
MAPLE
L2cfrac := proc(L, targ) local a, i; a := targ ; for i from 1 to nops(L) do a := 1/(a-op(i, L)) ; od: end: A128532 := proc(nmax) local b, n, bnxt; b := [1] ; for n from nops(b)+1 to nmax do bnxt := L2cfrac(b, combinat[fibonacci](n+1)) ; b := [op(b), bnxt] ; od: [seq( denom(b[i]), i=1..nops(b))] ; end: A128532(22) ; # R. J. Mathar, Oct 09 2007
CROSSREFS
Cf. A128531.
Sequence in context: A042555 A041891 A042813 * A130076 A223704 A359940
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 08 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved