

A130076


Primes p such that p^2 divides 5^p  3^p  2^p.


4




OFFSET

1,1


COMMENTS

For a prime p, p divides A130072(p) = 5^p  3^p  2^p. Quotients A130072(p)/p are listed in A130075.
If p^2 divides A130072(p), then p^(k+1) divides A130072(p^k) for every k>0. For p = 19, even 19^(k+2) divides A130072(p^k).
Numbers n such that n divides A130072(n) are listed in A130073. Nonprimes n such that n divides A130072(n) are listed in A130074, which apparently include all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m.
No other terms below 10^11.  Max Alekseyev, Dec 06 2010


LINKS

Table of n, a(n) for n=1..4.


EXAMPLE

p^2 divides A130072(p) = 5^p  3^p  2^p for prime p = {2,3,5,19}, quotients A130072(p)/p^2 are {3,10,114,52831921170}.


MATHEMATICA

fQ[p_]:=Mod[PowerMod[5, p, p^2]PowerMod[3, p, p^2]PowerMod[2, p, p^2], p^2]0 (* Robert G. Wilson v *)


PROG

(PARI) forprime(p=2, 1e9, if(Mod(5, p^2)^p==Mod(3, p^2)^p+Mod(2, p^2)^p, print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011


CROSSREFS

Cf. A130072, A130073, A130074, A130075.
Sequence in context: A041891 A042813 A128532 * A223704 A090116 A038876
Adjacent sequences: A130073 A130074 A130075 * A130077 A130078 A130079


KEYWORD

bref,hard,more,nonn


AUTHOR

Alexander Adamchuk, May 06 2007


EXTENSIONS

Edited by Max Alekseyev, Dec 05 2010


STATUS

approved



