The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130076 Primes p such that p^2 divides 5^p - 3^p - 2^p. 5
 2, 3, 5, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a prime p, p divides A130072(p) = 5^p - 3^p - 2^p. Quotients A130072(p)/p are listed in A130075. If p^2 divides A130072(p), then p^(k+1) divides A130072(p^k) for every k>0. For p = 19, even 19^(k+2) divides A130072(p^k). Numbers n such that n divides A130072(n) are listed in A130073. Nonprimes n such that n divides A130072(n) are listed in A130074, which apparently include all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m. No other terms below 10^11. - Max Alekseyev, Dec 06 2010 LINKS EXAMPLE p^2 divides A130072(p) = 5^p - 3^p - 2^p for prime p = {2,3,5,19}, quotients A130072(p)/p^2 are {3,10,114,52831921170}. MATHEMATICA fQ[p_]:=Mod[PowerMod[5, p, p^2]-PowerMod[3, p, p^2]-PowerMod[2, p, p^2], p^2]0 (* Robert G. Wilson v *) PROG (PARI) forprime(p=2, 1e9, if(Mod(5, p^2)^p==Mod(3, p^2)^p+Mod(2, p^2)^p, print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011 CROSSREFS Cf. A130072, A130073, A130074, A130075. Sequence in context: A041891 A042813 A128532 * A223704 A090116 A038876 Adjacent sequences:  A130073 A130074 A130075 * A130077 A130078 A130079 KEYWORD bref,hard,more,nonn AUTHOR Alexander Adamchuk, May 06 2007 EXTENSIONS Edited by Max Alekseyev, Dec 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 16:03 EST 2022. Contains 350599 sequences. (Running on oeis4.)