|
|
A130075
|
|
a(n) = (5^p - 3^p - 2^p)/p, where p = prime(n).
|
|
4
|
|
|
6, 30, 570, 10830, 4422630, 93776970, 44871187170, 1003806502230, 518297165370030, 6422911941109705770, 150213298561349961630, 1966475018690546370358170, 1109139879321302763891656370
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
p divides 5^p - 3^p - 2^p = A130072(p) for prime p.
p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0.
2 divides a(n). 3 divides a(n). 5 divides a(n) for n>1. 19 divides a(n) for n>2. 19^2 divides a(n) for n in A091178(n) or prime(n) in A002476.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (5^prime(n) - 3^prime(n) - 2^prime(n))/prime(n).
|
|
MATHEMATICA
|
Table[(5^Prime[n]-3^Prime[n]-2^Prime[n])/Prime[n], {n, 1, 20}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|