

A066388


Numbers n such that n and 2n are both between a pair of twin primes.


9



6, 30, 660, 810, 2130, 2550, 3330, 3390, 5850, 6270, 10530, 33180, 41610, 44130, 53550, 55440, 57330, 63840, 65100, 70380, 70980, 72270, 74100, 74760, 78780, 80670, 81930, 87540, 93240, 102300, 115470, 124770, 133980, 136950, 156420
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also terms of A014574 such that twice the term is also in A014574. Related to a problem of antidivisors.
A117499(a(n)) = 4.  Reinhard Zumkeller, Mar 23 2006
All a(n)>6 must be a multiple of 30: As for elements of A014574, we must have a(n) = 6k, and k=5m+/1 would lead to a(n)/+1 divisible by 5, while k=5m+/2 would lead to 2a(n)+/1 divisible by 5, so only k=5m is possible.  M. F. Hasler, Nov 27 2010


LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,1000
Eric Weisstein's World of Mathematics, Bitwin Chain


EXAMPLE

For n=30, 29 and 31 are prime, as are 59 and 61.


MATHEMATICA

lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; d=2; If[p2p1==d, w=p1+1; If[PrimeQ[2*w1]&&PrimeQ[2*w+1], AppendTo[lst, w]]], {n, 1, 10^4}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)


PROG

(PARI) { n=0; forstep (m=2, 10^9, 2, if (isprime(m  1) && isprime(m + 1) && isprime(2*m  1) && isprime(2*m + 1), write("b066388.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 13 2010


CROSSREFS

Cf. A001359, A006512, A012574.
Sequence in context: A256545 A075591 A130075 * A222718 A200894 A202861
Adjacent sequences: A066385 A066386 A066387 * A066389 A066390 A066391


KEYWORD

nonn


AUTHOR

Jud McCranie, Dec 23 2001


STATUS

approved



