login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066388 Numbers n such that n and 2n are both between a pair of twin primes. 11
6, 30, 660, 810, 2130, 2550, 3330, 3390, 5850, 6270, 10530, 33180, 41610, 44130, 53550, 55440, 57330, 63840, 65100, 70380, 70980, 72270, 74100, 74760, 78780, 80670, 81930, 87540, 93240, 102300, 115470, 124770, 133980, 136950, 156420 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also terms of A014574 such that twice the term is also in A014574. Related to a problem of anti-divisors.

A117499(a(n)) = 4. - Reinhard Zumkeller, Mar 23 2006

All a(n)>6 must be a multiple of 30: As for elements of A014574, we must have a(n) = 6k, and k=5m+/-1 would lead to a(n)-/+1 divisible by 5, while k=5m+/-2 would lead to 2a(n)+/-1 divisible by 5, so only k=5m is possible. - M. F. Hasler, Nov 27 2010

LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,1000

Eric Weisstein's World of Mathematics, Bitwin Chain

EXAMPLE

For n=30, 29 and 31 are prime, as are 59 and 61.

MATHEMATICA

lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; d=2; If[p2-p1==d, w=p1+1; If[PrimeQ[2*w-1]&&PrimeQ[2*w+1], AppendTo[lst, w]]], {n, 1, 10^4}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)

PROG

(PARI) { n=0; forstep (m=2, 10^9, 2, if (isprime(m - 1) && isprime(m + 1) && isprime(2*m - 1) && isprime(2*m + 1), write("b066388.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 13 2010

CROSSREFS

Cf. A001359, A006512, A012574.

Sequence in context: A256545 A075591 A130075 * A222718 A200894 A202861

Adjacent sequences:  A066385 A066386 A066387 * A066389 A066390 A066391

KEYWORD

nonn

AUTHOR

Jud McCranie, Dec 23 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 03:58 EST 2022. Contains 350473 sequences. (Running on oeis4.)