login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014574 Average of twin prime pairs. 377
4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488, 1608 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
With an initial 1 added, this is the complement of the closure of {2} under a*b+1 and a*b-1. - Franklin T. Adams-Watters, Jan 11 2006
Also the square root of the product of twin prime pairs + 1. Two consecutive odd numbers can be written as 2k+1,2k+3. Then (2k+1)(2k+3)+1 = 4(k^2+2k+1) = 4(k+1)^2, a perfect square. Since twin prime pairs are two consecutive odd numbers, the statement is true for all twin prime pairs. - Cino Hilliard, May 03 2006
Or, single (or isolated) composites. Nonprimes k such that neither k-1 nor k+1 is nonprime. - Juri-Stepan Gerasimov, Aug 11 2009
Numbers n such that sigma(n-1) = phi(n+1). - Farideh Firoozbakht, Jul 04 2010
Aside from the first term in the sequence, all remaining terms have digital root 3, 6, or 9. - J. W. Helkenberg, Jul 24 2013
Numbers n such that n^2-1 is a semiprime. - Thomas Ordowski, Sep 24 2015
Every term but the first is a multiple of 6. - Harvey P. Dale, Mar 31 2023
REFERENCES
Archimedeans Problems Drive, Eureka, 30 (1967).
LINKS
Y. Fujiwara, Parsing a Sequence of Qubits, IEEE Trans. Information Theory, 59 (2013), 6796-6806.
Y. Fujiwara, Parsing a Sequence of Qubits, arXiv:1207.1138 [quant-ph], 2012-2013.
L. J. Gerstein, A reformulation of the Goldbach conjecture, Math. Mag., 66 (1993), 44-45.
Brian Hayes, Does having prime neighbors make you more composite?, Bit-Player Article, Nov 04 2021
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
a(n) = (A001359(n) + A006512(n))/2 = 2*A040040(n) = A054735(n)/2 = A111046(n)/4.
a(n) = A129297(n+4). - Reinhard Zumkeller, Apr 09 2007
A010051(a(n) - 1) * A010051(a(n) + 1) = 1. Reinhard Zumkeller, Apr 11 2012
a(n) = 6*A002822(n-1), n>=2. - Ivan N. Ianakiev, Aug 19 2013
a(n)^4 - 4*a(n)^2 = A062354(a(n)^2 - 1). - Raphie Frank, Oct 17 2013
MAPLE
P := select(isprime, [$1..1609]): map(p->p+1, select(p->member(p+2, P), P)); # Peter Luschny, Mar 03 2011
A014574 := proc(n) option remember; local p ; if n = 1 then 4 ; else p := nextprime( procname(n-1) ) ; while not isprime(p+2) do p := nextprime(p) ; od ; return p+1 ; end if ; end proc: # R. J. Mathar, Jun 11 2011
MATHEMATICA
Select[Table[Prime[n] + 1, {n, 260}], PrimeQ[ # + 1] &] (* Ray Chandler, Oct 12 2005 *)
Mean/@Select[Partition[Prime[Range[300]], 2, 1], Last[#]-First[#]==2&] (* Harvey P. Dale, Jan 16 2014 *)
PROG
(PARI) p=2; forprime(q=3, 1e4, if(q-p==2, print1(p+1", ")); p=q) \\ Charles R Greathouse IV, Jun 10 2011
(Maxima) A014574(n) := block(
if n = 1 then
return(4),
p : A014574(n-1) ,
for k : 2 step 2 do (
if primep(p+k-1) and primep(p+k+1) then
return(p+k)
)
)$ /* R. J. Mathar, Mar 15 2012 */
(Haskell)
a014574 n = a014574_list !! (n-1)
a014574_list = [x | x <- [2, 4..], a010051 (x-1) == 1, a010051 (x+1) == 1]
-- Reinhard Zumkeller, Apr 11 2012
(GAP) a:=1+Filtered([1..2000], p->IsPrime(p) and IsPrime(p+2)); # Muniru A Asiru, May 20 2018
CROSSREFS
A068507 is the intersection of A002182 and this sequence.
Sequence in context: A353073 A072570 A217259 * A258838 A034425 A073123
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Offset changed to 1 by R. J. Mathar, Jun 11 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 03:01 EST 2024. Contains 370379 sequences. (Running on oeis4.)