

A002822


Numbers n such that 6n1, 6n+1 are twin primes.
(Formerly M0641 N0235)


67



1, 2, 3, 5, 7, 10, 12, 17, 18, 23, 25, 30, 32, 33, 38, 40, 45, 47, 52, 58, 70, 72, 77, 87, 95, 100, 103, 107, 110, 135, 137, 138, 143, 147, 170, 172, 175, 177, 182, 192, 205, 213, 215, 217, 220, 238, 242, 247, 248, 268, 270, 278, 283, 287, 298, 312, 313, 322, 325
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

6n1 and 6n+1 are twin primes iff n is not of the form 6ab + a + b.  Jon Perry, Feb 01 2002
The above equivalence was rediscovered by Balestrieri, see link.  Charles R Greathouse IV, Jul 05 2011
Even entries correspond to twin primes of the form (4k  1, 4k + 1), odd entries to twin primes of the form (4k + 1, 4k + 3).  Lekraj Beedassy, Apr 03 2002
A002822 U A067611 U A171696 = A001477.  JuriStepan Gerasimov, Feb 14 2010
From Bob Selcoe, Nov 28 2014: (Start)
Except for a(1)=1, all numbers in this sequence are congruent to (0, 2 or 3) mod 5.
It appears that when a(n)=6j, then j is also in the sequence (e.g., 138 = 6*23; 312 = 6*52). This also appears to hold for sequence A191626. If true, then it suggests that when seeking large twin primes, good candidates might be 36*a(n) + 1, n>=2.
Conjecture: There is at least one number in the sequence in the interval [5k, 7k] inclusive, k>=1. If true, then the twin prime conjecture also is true.
(End)
A counterexample to "It appears that ...": Take j = 63. Then 6j = 378 and 36j = 2268. Now 379, 2267, and 2269 are prime, but 377 = 13 * 29. The sequence of counterexamples is A263282.  Jason Kimberley, Oct 13 2015
Dinculescu calls all terms in the sequence "twin ranks", and all other positive integers "nonranks", see links. Nonranks are given by the formula np + [p/6] for natural n and prime p>4, while twin ranks (this sequence) cannot be represented as np + [p/6] for any n, p>4. Here [p/6] is the nearest integer to p/6.  Alexei Kourbatov, Jan 03 2015
Number of terms less than 10^k: 0, 5, 25, 142, 810, 5330, 37915, ...  Muniru A Asiru, Jan 24 2018


REFERENCES

W. J. LeVeque, Topics in Number Theory. AddisonWesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 69.
W. SierpiĆski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 120.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
F. Balestrieri, An Equivalent Problem To The Twin Prime Conjecture, arXiv:1106.6050v1 [math.GM], 2011.
A. Dinculescu, On Some Infinite Series Related to the Twin Primes, The Open Mathematics Journal, 5 (2012), 814.
A. Dinculescu, The Twin Primes Seen from a Different Perspective, The British Journal of Mathematics & Computer Science, 3 (2013), Issue 4, 691698.
S. W. Golomb, Problem E969, Solution, Amer. Math. Monthly, 58 (1951), 338; 59 (1952), 44.
S. W. Golomb, Letter to N. J. A. Sloane, Mar 26 1984
Matthew A. Myers, Comments on A002822, Letter to N. J. A. Sloane, Dec 04 2018


FORMULA

a(n) = A014574(n+1)/6.  Ivan N. Ianakiev, Aug 19 2013


MAPLE

select(n > isprime(6*n1) and isprime(6*n+1), [$1..1000]); # Robert Israel, Jan 11 2015


MATHEMATICA

Select[ Range[350], PrimeQ[6#  1] && PrimeQ[6# + 1] & ]


PROG

(MAGMA) [n: n in [1..200]  IsPrime(6*n+1) and IsPrime(6*n1)] // Vincenzo Librandi, Nov 21 2010
(PARI) select(primes(100), n>isprime(n2)&&n>5)\6 \\ Charles R Greathouse IV, Jul 05 2011
(PARI) p=5; forprime(q=5, 1e4, if(qp==2, print1((p+1)/6", ")); p=q); \\ Altug Alkan, Oct 13 2015
(PARI) list(lim)=my(v=List(), p=5); forprime(q=7, 6*lim+1, if(qp==2, listput(v, q\6)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 03 2016
(Haskell)
a002822 n = a002822_list !! (n1)
a002822_list = f a000040_list where
f (q:ps'@(p:ps))  p > q + 2  r > 0 = f ps'
 otherwise = y : f ps where (y, r) = divMod (q + 1) 6
 Reinhard Zumkeller, Jul 13 2014


CROSSREFS

Complement of A067611.
Intersection of A024898 and A024899.
A191626 is a subsequence.
Cf. A014574, A263282.
Sequence in context: A062442 A036964 A067162 * A191327 A109598 A117959
Adjacent sequences: A002819 A002820 A002821 * A002823 A002824 A002825


KEYWORD

nonn,nice,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001


STATUS

approved



