OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..14
Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
FORMULA
a(1) = 1. a(n) = -n - 2 + (-1)^(n-1) * Sum_{k=0..n-1} ((-1)^k * binomial(n, k) * Sum_{j=0..k} 2^binomial(k, j)), n > 1. - Sean A. Irvine, Aug 24 2014
MATHEMATICA
a[1] = 1; a[n_] := -n-2+(-1)^(n-1) Sum[(-1)^k Binomial[n, k] Sum[2^Binomial[ k, j], {j, 0, k}], {k, 0, n-1}];
Array[a, 11] (* Jean-François Alcover, Aug 19 2018 *)
PROG
(PARI) a(n) = if (n==1, 1, -n - 2 + (-1)^(n-1) * sum(k=0, n-1, (-1)^k * binomial(n, k) * sum(j=0, k, (2^binomial(k, j))))); \\ Michel Marcus, Aug 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Aug 24 2014
STATUS
approved