login
A002824
Number of precomplete Post functions.
(Formerly M3053 N1237)
12
1, 3, 18, 190, 3285, 88851, 3640644, 220674924, 19427552055, 2448107338105, 436330306419678, 108909970814260122, 37752710546082668409, 18044326480066641231855, 11818118910855384843861960, 10549135258779933616014791704, 12772521057179994145518171256587
OFFSET
2,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
LINKS
Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
FORMULA
a(n) = binomial(n, 2) * A001035(n - 2). - Sean A. Irvine, Aug 24 2014
MATHEMATICA
A001035 = DeleteCases[Import["https://oeis.org/A001035/b001035.txt", "Table"], b_ /; ! MatchQ[b, {_Integer, _Integer}] ][[All, 2]];
a[n_] := Binomial[n, 2] * A001035[[n - 1]];
Table[a[n], {n, 2, Length[A001035] + 1}] (* Jean-François Alcover, May 11 2019 *)
CROSSREFS
Cf. A001035.
Sequence in context: A178014 A258659 A363414 * A259336 A308134 A160707
KEYWORD
nonn
EXTENSIONS
More terms from Alois P. Heinz, Jun 02 2017
STATUS
approved