

A002827


Unitary perfect numbers: usigma(n)n = n.
(Formerly M4268 N1783)


32




OFFSET

1,1


COMMENTS

d is a unitary divisor of n if gcd(d,n/d)=1; usigma(n) is their sum (A034448).
The prime factors of a unitary perfect number (A002827) are the Higgs primes (A057447).  Paul Muljadi, Oct 10 2005
It is not known if a(6) exists.  N. J. A. Sloane, Jul 27 2015
Frei proved that if there is a unitary perfect number that is not divisible by 3, then it is divisible by 2^m with m >= 144, it has at least 144 distinct odd prime factors, and it is larger than 10^440.  Amiram Eldar, Mar 05 2019


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.
F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 59, 1983.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.45.1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..5.
H. A. M. Frei, Über unitar perfekte Zahlen, Elemente der Mathematik, Vol. 33, No. 4 (1978), pp. 9596.
A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev.
M. V. Subbarao, Letter to N. J. A. Sloane, Feb 18 1974
M. V. Subbarao, T. J. Cook, R. S. Newberry and J. M. Weber, On unitary perfect numbers, Delta, 3 (No. 1, 1972), 2226.
G. Villemin's Almanac of Numbers, Nombres Unitairement Parfaits
C. R. Wall, Letter to P. Hagis, Jr., Jan 13 1972
C. R. Wall, The fifth unitary perfect number, Canad. Math. Bull., 18 (1975), 115122.
C. R. Wall, On the largest odd component of a unitary perfect number, Fib. Quart., 25 (1987), 312316.
Eric Weisstein's World of Mathematics, Unitary Perfect Number.
Wikipedia, Unitary perfect number


EXAMPLE

Unitary divisors of 60 are 1,4,3,5,12,20,15,60, with sum 120 = 2*60.
146361946186458562560000 = 2^18 * 3 * 5^4 * 7 * 11 * 13 * 19 * 37 * 79 * 109 * 157 * 313.


MATHEMATICA

usnQ[n_]:=Total[Select[Divisors[n], GCD[#, n/#]==1&]]==2n; Select[Range[ 90000], usnQ] (* This will generate the first four terms of the sequence; it would take a very long time to attempt to generate the fifth term. *) (* Harvey P. Dale, Nov 14 2012 *)


PROG

(PARI) is(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))==2*n \\ Charles R Greathouse IV, Aug 01 2016


CROSSREFS

Cf. A034460, A034448, A057447.
Subsequence of the following sequences: A003062, A290466 (seemingly), A293188, A327157, A327158.
Gives the positions of ones in A327159.
Sequence in context: A324707 A007357 A327158 * A324199 A137498 A250070
Adjacent sequences: A002824 A002825 A002826 * A002828 A002829 A002830


KEYWORD

nonn,nice,hard


AUTHOR

N. J. A. Sloane.


STATUS

approved



