login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331111
Dual-Zeckendorf-infinitary perfect numbers: numbers k such that A331110(k) = 2*k.
1
6, 60, 90, 655200, 28828800, 238140000, 10478160000
OFFSET
1,1
COMMENTS
No more terms below 2.8*10^10.
EXAMPLE
6 is a term since A331110(6) = 12 = 2*6.
MATHEMATICA
fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, {}, v[[i[[1, 1]] ;; -1]]]];
f[p_, e_] := p^Fibonacci[1 + Position[Reverse @ dualZeck[e], _?(# == 1 &)]];
dzsigma[1] = 1; dzsigma[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); seqQ[n_] := dzsigma[n] == 2n; Select[Range[10^6], seqQ]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jan 09 2020
STATUS
approved