

A074849


4infinitary perfect numbers: n such that 4infinitarysigma(n)=2*n.


3




OFFSET

0,1


COMMENTS

Here 4infinitarysigma(a) means sum of 4infinitarydivisor of a. If n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its 4ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4infinitarydivisor of n.


LINKS

Table of n, a(n) for n=0..6.


EXAMPLE

Factorizations: 2*3, 2^2*7, 2^4*3^3*5*17, 2^4*3^2*7*13*17, 2^5*3^4*7*17*41, 2^8*3^2*7*13^2*31*61, 2^12*3^5*7*11*41*43*257.


CROSSREFS

Sequence in context: A154895 A330163 A276493 * A189373 A156927 A178366
Adjacent sequences: A074846 A074847 A074848 * A074850 A074851 A074852


KEYWORD

nonn


AUTHOR

Yasutoshi Kohmoto, Sep 10 2002


STATUS

approved



