login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330163 Even perfect numbers m from A000396 such that w = (m + 2^(k(m) - 1) - 1) * 2^(2*(k(m) - 1)) is also an even perfect number, where k(m) is the Mersenne exponent A000043(m). 1
6, 28, 8128, 2305843008139952128 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Corresponding values of even perfect numbers w: 28, 496, 33550336, 2658455991569831744654692615953842176, ... (A330164).

Corresponding values of Mersenne exponents k(m) and k(w): (2, 3, 7, 31, ...), (3, 5, 13, 61, ...), where k(w) = 2*k(m) - 1.

LINKS

Table of n, a(n) for n=1..4.

MATHEMATICA

f[n_] := 2^(n - 1)*(2^n - 1); g[n_] := 2^n - 2^((n - 1)/2); mers = MersennePrimeExponent[Range[10]]; g /@ Select[mers, MemberQ[f /@ mers, g[#]] &] (* Amiram Eldar, Dec 06 2019 *)

PROG

(MAGMA) [(2^k - 1) * (2^(k - 1)): k in [1..100] | SumOfDivisors((2^k - 1) * (2^(k - 1))) / ( (2^k - 1) * (2^(k - 1))) eq 2 and SumOfDivisors(((2^k - 1) * (2^(k - 1)) + (2^(k - 1) - 1)) * (2^(2*(k - 1)))) / (((2^k - 1) * (2^(k - 1)) + (2^(k - 1) - 1)) * (2^(2*(k - 1)))) eq 2]

CROSSREFS

Cf. A000043, A000396, A330164.

Sequence in context: A095723 A057246 A154895 * A276493 A074849 A189373

Adjacent sequences:  A330160 A330161 A330162 * A330164 A330165 A330166

KEYWORD

nonn,more

AUTHOR

Jaroslav Krizek, Dec 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)