login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038182
3-infinitary perfect numbers k: 3-i-sigma(k) = 2*k, where 3-i-sigma = A049418.
6
6, 28, 3024, 6552, 27578880, 49266240, 49095705098695680
OFFSET
1,1
COMMENTS
Similarly, we have 3-i-sigma(x)/x = r for the following numbers: r = 3 for x = 672, 13104, 4021920, 55157760, 98532480, 459818240, 372667889664, 7267023848448, 1178296922368696320, 5498718971053916160, ...; r = 4 for x = 2178540; r = 3/2 for x = 2, 24, 9192960, 196382820394782720. (Values above 10^7 from Yasutoshi Kohmoto, some terms may be missing.) - M. F. Hasler, Sep 21 2022
LINKS
J. O. M. Pedersen, Tables of Aliquot Cycles: backup on web.archive.org of no more existing web page, as of May 2014.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
EXAMPLE
Factorizations: 2*3, 2^2*7, 2^4*3^3*7, 2^3*3^2*7*13, 2^9*3^4*5*7*19, 2^6*3*5*19*37*73, 2^10*3^6*5*19^2*127*379*757.
MATHEMATICA
f[p_, e_] := Module[{d = IntegerDigits[e, 3]}, m = Length[d]; Product[(p^((d[[j]] + 1)*3^(m - j)) - 1)/(p^(3^(m - j)) - 1), {j, 1, m}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[7000], s[#] == 2*# &] (* Amiram Eldar, Oct 24 2024 *)
PROG
(PARI) is_A038182(n)=A049418(n)==2*n \\ M. F. Hasler, Sep 21 2022
CROSSREFS
KEYWORD
nonn,nice,more
EXTENSIONS
Definition shortened by R. J. Mathar, Oct 06 2010
STATUS
approved