login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166998
G.f.: sqrt(C(x)^2 - S(x)^2) where C(x) = Sum_{n>=0} log(1 - 2^(2n)*x)^(2n)/(2n)! and S(x) = Sum_{n>=0} -log(1 - 2^(2n+1)*x)^(2n+1)/(2n+1)! are the g.f.s of A166995 and A166996, respectively.
4
1, 0, 6, 28, 2684, 85664, 96848424, 18318978896, 459531493100736, 468613553577122688, 349607028167776160389536, 1788682277200384090414421312, 46561932503015793339090359576558496
OFFSET
0,3
FORMULA
G.f.: sqrt([C(x)+S(x)]*[C(x)-S(x)]) where C(x) + S(x) = g.f. of A060690 and C(-x) - S(-x) = g.f. of A014070.
Self-convolution yields A166998.
EXAMPLE
G.f: 1 + 6*x^2 + 28*x^3 + 2684*x^4 + 85664*x^5 + 96848424*x^6 +...
which equals sqrt( C(x)^2 - S(x)^2 ) where
C(x) = 1 + 8*x^2 + 32*x^3 + 2848*x^4 + 87808*x^5 + 97425920*x^6 +...
S(x) = 2*x + 2*x^2 + 88*x^3 + 1028*x^4 + 289184*x^5 + 22451552*x^6 +...
Related expansions:
C(x) + S(x) = 1 + 2*x + 10*x^2 + 120*x^3 + 3876*x^4 + 376992*x^5 +...
C(x) - S(x) = 1 - 2*x + 6*x^2 - 56*x^3 + 1820*x^4 - 201376*x^5 +...
PROG
(PARI) {a(n)=polcoeff(sqrt(sum(k=0, n, log(1-2^(2*k)*x +x*O(x^n))^(2*k)/(2*k)!)^2-sum(k=0, n, log(1-2^(2*k+1)*x +x*O(x^n))^(2*k+1)/(2*k+1)!)^2), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 22 2009
STATUS
approved