login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060690
a(n) = binomial(2^n + n - 1, n).
32
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
OFFSET
0,2
COMMENTS
Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e., the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.
Row sums of A220886. - Geoffrey Critzer, Nov 20 2014
LINKS
FORMULA
a(n) = [x^n] 1/(1-x)^(2^n).
a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - Vladeta Jovovic, May 28 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008
a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008
G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
a(n) = A163767(2^n). - Alois P. Heinz, Jun 12 2024
MAPLE
with(combinat): for n from 0 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od:
MATHEMATICA
Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *)
PROG
(PARI) a(n)=binomial(2^n+n-1, n)
(PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} \\ Paul D. Hanna, Dec 29 2007
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
(Sage) [binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
(Python)
from math import comb
def A060690(n): return comb((1<<n)+n-1, n) # Chai Wah Wu, Jul 05 2024
CROSSREFS
Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), this sequence (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Main diagonal of A092056.
Central terms of A137153.
Sequence in context: A322295 A363586 A256832 * A013038 A005321 A339934
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
EXTENSIONS
More terms from James A. Sellers, Apr 20 2001
Edited by N. J. A. Sloane, Mar 17 2008
STATUS
approved