login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(2^n + n - 1, n).
32

%I #51 Jul 05 2024 09:54:29

%S 1,2,10,120,3876,376992,119877472,131254487936,509850594887712,

%T 7145544812472168960,364974894538906616240640,

%U 68409601066028072105113098240,47312269462735023248040155132636160,121317088003402776955124829814219234385920

%N a(n) = binomial(2^n + n - 1, n).

%C Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e., the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.

%C Row sums of A220886. - _Geoffrey Critzer_, Nov 20 2014

%H Harry J. Smith, <a href="/A060690/b060690.txt">Table of n, a(n) for n = 0..59</a>

%F a(n) = [x^n] 1/(1-x)^(2^n).

%F a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - _Vladeta Jovovic_, May 28 2004

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - _Vladeta Jovovic_, Jan 21 2008

%F a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - _Vladeta Jovovic_, Jan 21 2008

%F G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - _Paul D. Hanna_, Dec 29 2007

%F a(n) ~ 2^(n^2) / n!. - _Vaclav Kotesovec_, Jul 02 2016

%F a(n) = A163767(2^n). - _Alois P. Heinz_, Jun 12 2024

%p with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:

%t Table[Binomial[2^n+n-1,n],{n,0,20}] (* _Harvey P. Dale_, Apr 19 2012 *)

%o (PARI) a(n)=binomial(2^n+n-1,n)

%o (PARI) {a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ _Paul D. Hanna_, Dec 29 2007

%o (PARI) a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ _Paul D. Hanna_, Nov 20 2014

%o (Sage) [binomial(2^n +n-1, n) for n in (0..20)] # _G. C. Greubel_, Mar 14 2021

%o (Magma) [Binomial(2^n +n-1, n): n in [0..20]]; // _G. C. Greubel_, Mar 14 2021

%o (Python)

%o from math import comb

%o def A060690(n): return comb((1<<n)+n-1,n) # _Chai Wah Wu_, Jul 05 2024

%Y Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), this sequence (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).

%Y Cf. A002416, A060336, A088309, A163767.

%Y Cf. A136555, A220886.

%Y Main diagonal of A092056.

%Y Central terms of A137153.

%K nonn

%O 0,2

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

%E More terms from _James A. Sellers_, Apr 20 2001

%E Edited by _N. J. A. Sloane_, Mar 17 2008