OFFSET
0,3
COMMENTS
Number of n x n binary matrices without zero rows and with distinct rows up to permutation of rows, cf. A014070.
Row 0 of square array A136555.
From Gus Wiseman, Dec 19 2023: (Start)
Also the number of n-element sets of nonempty subsets of {1..n}, or set-systems with n vertices and n edges (not necessarily covering). The covering case is A054780. For example, the a(3) = 35 set-systems are:
{1}{2}{3} {1}{2}{12} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{13} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{2}{23} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{12} {1}{12}{23} {2}{12}{123}
{1}{3}{13} {1}{13}{23} {2}{13}{123}
{1}{3}{23} {2}{3}{123} {2}{23}{123}
{2}{3}{12} {2}{12}{13} {3}{12}{123}
{2}{3}{13} {2}{12}{23} {3}{13}{123}
{2}{3}{23} {2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
Of these, only {{1},{2},{1,2}}, {{1},{3},{1,3}}, and {{2},{3},{2,3}} do not cover the vertex set.
(End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..50
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2^n,k).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k) * (2^n-1)^k.
G.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n! * (1 + 2^n*x)).
a(n) ~ 2^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
MAPLE
MATHEMATICA
f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
Table[Length[Subsets[Rest[Subsets[Range[n]]], {n}]], {n, 0, 4}] (* Gus Wiseman, Dec 19 2023 *)
PROG
(PARI) {a(n) = binomial(2^n-1, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* As coefficient of x^n in the g.f.: */
{a(n) = polcoeff( sum(i=0, n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
(Sage) [binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
(Python)
from math import comb
def A136556(n): return comb((1<<n)-1, n) # Chai Wah Wu, Jan 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 07 2008; Paul Hanna and Vladeta Jovovic, Jan 15 2008
EXTENSIONS
Edited by N. J. A. Sloane, Jan 26 2008
STATUS
approved