login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215582
The number of proper mergings of two n-antichains.
1
1, 3, 35, 1275, 154115, 71994363, 140595475715, 1133624776334235, 36970581556591250435, 4838797912961323412254203, 2535793883977350841761956006915, 5317221866238397002010248863448839835, 44602260230569982664472646479956459441496835, 1496585236610867406252010206465708857876795888774523
OFFSET
0,2
COMMENTS
The number of proper mergings of an n-antichain and an m-antichain can be computed with the following formula: a(m,n)=Sum_{i+j+k=m} m!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n.
LINKS
FORMULA
a(n)=Sum_{i+j+k=n}{n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n}.
limit n->infinity a(n)/(2^(n^2))=2 [From Vaclav Kotesovec, Aug 23 2012]
EXAMPLE
For n=1, the a(1)=3 proper mergings of two 1-antichains ({a},{}) and ({b},{}) are the following three posets: ({a,b},{}), ({a,b},{(a,b)}), ({a,b},{(b,a)}).
MATHEMATICA
Table[Sum[Sum[Sum[If[i+j+k==n, n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n, 0], {i, 0, n}], {j, 0, n}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 23 2012 *)
CROSSREFS
Sequence in context: A062699 A012767 A279377 * A136525 A136556 A006098
KEYWORD
easy,nonn
AUTHOR
Henri Mühle, Aug 21 2012
STATUS
approved