The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215581 The limit of the string "0, 1" under the operation 'append last k terms, append first k terms, increment k' with k=1 initially. 0
 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS An infinite binary word. b(n) = sum of the first 10^n terms begins: 0, 4, 50, 534, 5218, 48127, 517287, 5390832, 53047574, 504439952, 4838747337. LINKS Table of n, a(n) for n=0..85. EXAMPLE 01 -> 01 1 0 -> 0110 10 01 -> 01101001 001 011 etc. PROG (Python) TOP = 1000 a = [0]*TOP a[1] = 1 n = 2 k = 1 while n+k*2 < TOP: a[n:] = a[n-k:n] n += k a[n:] = a[:k] n += k k += 1 for k in range(n): print a[k], CROSSREFS Cf. A094186, A215531, A215532. Sequence in context: A295890 A342704 A284622 * A156595 A286493 A189084 Adjacent sequences: A215578 A215579 A215580 * A215582 A215583 A215584 KEYWORD nonn,easy AUTHOR Alex Ratushnyak, Aug 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 07:11 EDT 2024. Contains 373469 sequences. (Running on oeis4.)