login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342704
Characteristic function of base-2 lunar primes: a(n) = 1 if n is a base-2 lunar prime, otherwise 0.
1
0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1
OFFSET
1
EXAMPLE
a(9) = 1 because 9 does not occur anywhere in the inner portion of the OR-numbral multiplication table A067138 (apart from its row/column 1). On the other hand, a(7) = 0 because A067138(3,3) = 7. - Antti Karttunen, Mar 21 2021
PROG
(Python)
def addn(m1, m2):
s1, s2 = bin(m1)[2:].zfill(0), bin(m2)[2:].zfill(0)
len_max = max(len(s1), len(s2))
return int(''.join(max(i, j) for i, j in zip(s1.rjust(len_max, '0'), s2.rjust(len_max, '0'))))
def muln(m1, m2):
s1, s2, prod = bin(m1)[2:].zfill(0), bin(m2)[2:].zfill(0), '0'
for i in range(len(s2)):
k = s2[-i-1]; prod = addn(int(str(prod), 2), int(''.join(min(j, k) for j in s1), 2)*2**i)
return prod
m = 1; m_size = 7; L_im = [1]
while m <= 2**m_size:
for i in range(2, m + 1):
im_st = str(muln(i, m)); im = int(im_st, 2); im_len = len(im_st)
if im_len > m_size: break
if im not in L_im: L_im.append(im)
print(1) if m not in L_im else print(0); m += 1
CROSSREFS
Characteristic function of A067139.
Cf. A342678 (partial sums), A067138, A169912, A171000, A171750, A171752.
Cf. also A010051, A091225.
Sequence in context: A209229 A365089 A295890 * A284622 A379184 A215581
KEYWORD
nonn,base
AUTHOR
Ya-Ping Lu, Mar 19 2021
STATUS
approved