login
A379184
a(n) = A379183(n) mod 2.
5
0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
1
COMMENTS
For the interesting properties of this sequence and A379183, see the article "Finding missing gems amidst chaos".
Using Go language code found under Links, a search up to 10^9 terms counts irreducible missing binary words of length L = 1..20 as follows: [0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Can anyone prove the 256 missing words at L=10 are never found in unbounded searching?
A missing word is said to be irreducible if none of its subwords are missing.
LINKS
MAPLE
b:= proc(n) option remember; `if`(n<4, signum(n-1), n-b(b(n-2))) end:
a:= n-> irem(b(n), 2):
seq(a(n), n=1..105); # Alois P. Heinz, Dec 21 2024
MATHEMATICA
Block[{a}, a[1]=0; a[2]=a[3]=1; a[n_]:=a[n]=n-a[a[n-2]]; Mod[a/@Range[50], 2]]
PROG
(PARI)
a(n)={my(b); b=vector(n); for(n=1, n, b[n]=if(
n==1, 0, n==2, 1, n==3, 1, n-b[b[n-2]])); b[n]%2}
(Go)
func a(n int) int {
b := make([]int, n+1);
copy(b, []int{0, 0, 1, 1});
for i:=4; i < n+1; i++ {
b[i] = i-b[b[i-2]];
};
return b[n]%2
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Bradley Klee, Dec 17 2024
STATUS
approved