OFFSET
1
COMMENTS
For the interesting properties of this sequence and A379183, see the article "Finding missing gems amidst chaos".
Using Go language code found under Links, a search up to 10^9 terms counts irreducible missing binary words of length L = 1..20 as follows: [0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Can anyone prove the 256 missing words at L=10 are never found in unbounded searching?
A missing word is said to be irreducible if none of its subwords are missing.
LINKS
Brad Klee, Finding missing gems amidst chaos, Wolfram Community, 2024.
Bradley Klee, Conjecture Certificate (golang)
Stephen Wolfram, Nestedly Recursive Functions, 2024.
MAPLE
b:= proc(n) option remember; `if`(n<4, signum(n-1), n-b(b(n-2))) end:
a:= n-> irem(b(n), 2):
seq(a(n), n=1..105); # Alois P. Heinz, Dec 21 2024
MATHEMATICA
Block[{a}, a[1]=0; a[2]=a[3]=1; a[n_]:=a[n]=n-a[a[n-2]]; Mod[a/@Range[50], 2]]
PROG
(PARI)
a(n)={my(b); b=vector(n); for(n=1, n, b[n]=if(
n==1, 0, n==2, 1, n==3, 1, n-b[b[n-2]])); b[n]%2}
(Go)
func a(n int) int {
b := make([]int, n+1);
copy(b, []int{0, 0, 1, 1});
for i:=4; i < n+1; i++ {
b[i] = i-b[b[i-2]];
};
return b[n]%2
}
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Bradley Klee, Dec 17 2024
STATUS
approved