login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094186 Taking a(1)=0 and a(2)=1, sequence (a(n))n>1 is defined as follows : letting w(k)=a(1)a(2)...a(k) and w(infinity)= limit k ->infinity a(1)a(2)w(1)w(2)...w(k) we have w(infinity)=a(1)a(2)a(3)a(4)... 7
0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

An infinite binary word.

A shorter definition: the limit of the string "0, 1" under the operation 'append first k terms, increment k' with k=1 initially.

Sums of the first 10^n terms are: 0, 4, 36, 358, 3576, 34908, 356258, 3621799, 35807401, 352047694, 3495167093. [Alex Ratushnyak, Aug 15 2012]

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

It seems that limit n ->infinity 1/n*sum(k=1, n, a(k)) = 0.34...

EXAMPLE

w(1)=0, w(2)=01, therefore a(1)a(2)w(1)w(2)=01001=a(1)a(2)a(3)a(4)a(5) and sequence begins : 0,1,0,0,1,...

MAPLE

S:= "01":

for k from 1 to 40 do

    A:= cat(A, A[1..k])

od:

seq(parse(A[i]), i=1..length(A)); # Robert Israel, Mar 28 2019

PROG

(Python)

TOP = 1000

a = [0]*TOP

a[1] = 1

n = 2

k = 1

while n+k < TOP:

  a[n:] = a[:k]

  n += k

  k += 1

for k in range(n):

  print(a[k], end=", ")

# Alex Ratushnyak, Aug 15 2012

CROSSREFS

Cf. A164349, A215531, A215532.

Sequence in context: A341256 A270742 A164349 * A267371 A285205 A286654

Adjacent sequences:  A094183 A094184 A094185 * A094187 A094188 A094189

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 19:36 EDT 2021. Contains 343868 sequences. (Running on oeis4.)