login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136554 G.f.: A(x) = Sum_{n>=0} log( (1 + x)*(1 + 2^n*x) )^n / n!. 0
1, 3, 10, 82, 2304, 232088, 81639942, 99425060368, 421915147527984, 6313762292901492960, 337457827116687464134048, 65175276571204939272971781496, 45944813538624773942727094008288680 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(2^k, k)*C(2^k, n-k).
G.f.: A(x) = Sum_{n>=0} C(2^n,n) * x^n * (1+x)^(2^n).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 10*x^2 + 82*x^3 + 2304*x^4 + 232088*x^5 +...;
A(x) = 1 + log((1+x)*(1+2*x)) + log((1+x)*(1+4*x))^2/2! + log((1+x)*(1+8*x))^3/3! + log((1+x)*(1+16*x))^4/4! +...
Surprisingly, this sum yields a series in x with only integer coefficients.
PROG
(PARI) {a(n)=polcoeff(sum(i=0, n, log((1+x)*(1+2^i*x)+x*O(x^n))^i/i!), n)}
(PARI) {a(n)=sum(k=0, n, binomial(2^k, k)*binomial(2^k, n-k))}
CROSSREFS
Sequence in context: A262259 A203492 A320258 * A359970 A341848 A136505
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2008, Jan 07 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)