login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320258
a(n) = n! * [x^n] exp(x*exp(-n*x)).
1
1, 1, -3, 10, 81, -4724, 156205, -4406814, 76958273, 3775676248, -698309272899, 72802616429830, -6310377003297455, 435451735391849892, -10028808876450831571, -4757293711381352201774, 1464955115044140633346305, -310063138309576689774123728, 55179706013436631385620675837
OFFSET
0,3
FORMULA
a(n) = [x^n] Sum_{k>=0} x^k/(1 + n*k*x)^(k+1).
a(n) = Sum_{k=0..n} binomial(n,k)*(-n*k)^(n-k).
MATHEMATICA
Table[n! SeriesCoefficient[Exp[x Exp[-n x]], {x, 0, n}], {n, 0, 18}]
Table[SeriesCoefficient[Sum[x^k/(1 + n k x)^(k + 1), {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[Sum[Binomial[n, k] (-n k)^(n - k), {k, 0, n}], {n, 18}]]
CROSSREFS
Sequence in context: A236696 A262259 A203492 * A136554 A359970 A341848
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 08 2018
STATUS
approved