login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320259
Terms that are on the y-axis of the square spiral built with 2*k, 2*k+1, 2*k+1 for k >= 0.
1
0, 2, 5, 9, 15, 22, 30, 40, 51, 63, 77, 92, 108, 126, 145, 165, 187, 210, 234, 260, 287, 315, 345, 376, 408, 442, 477, 513, 551, 590, 630, 672, 715, 759, 805, 852, 900, 950, 1001, 1053, 1107, 1162, 1218, 1276, 1335
OFFSET
0,2
COMMENTS
a(n) mod 9 is of period 27.
The spiral:
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), a(0)=0, a(1)=2, a(2)=5, a(3)=9, a(4)=15.
a(n) = a(n-1) + A004772(n+1), a(0)=0, n>0.
a(n+15) = a(n-15) + 10*A004767(n).
a(-n-1) = ({0} U A000969(n)) = 0, 1, 3, 7, ... = b(n), the full x-axis terms.
a(-n-1) + a(n) = 0, 3, 8, 16, ... = A211480(n+1).
a(n) = b(n) + A004523(n+1).
G.f.: x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Oct 08 2018
a(n) = A143978(n) + A002264(n+2).
a(n) = A000969(-2-n) for all n in Z. - Michael Somos, Nov 13 2018
EXAMPLE
G.f. = 2*x + 5*x^2 + 9*x^3 + 15*x^4 + 22*x^5 + 30*x^6 + ... - Michael Somos, Nov 13 2018
MAPLE
seq(coeff(series(x^2*(2+x+x^2)/((1-x)^3*(1+x+x^2)), x, n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 08 2018
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 2, 5, 9, 15}, 50] (* or *)
CoefficientList[Series[x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 09 2018 *)
a[ n_] := Quotient[(n + 1) (2 n + 1), 3]; (* Michael Somos, Nov 13 2018 *)
PROG
(PARI) concat(0, Vec(x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Oct 08 2018
(PARI) {a(n) = (n + 1) * (2*n + 1) \ 3}; /* Michael Somos, Nov 13 2018 */
(GAP) a:=[0, 2, 5, 9, 15];; for n in [6..50] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-2*a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Oct 08 2018
CROSSREFS
Cf. A000969, A004396, A004523, A004767, A004772 (first differences), A211480, A002264, A143978.
Sequence in context: A195014 A152738 A022941 * A007982 A011904 A308265
KEYWORD
nonn
AUTHOR
Paul Curtz, Oct 08 2018
STATUS
approved