login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004767 a(n) = 4*n + 3. 121
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12).

Binary expansion ends 11.

These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro (jorgecoveiro(AT)yahoo.com), Dec 16 2004 [This comment needs clarification]

a(n) = smallest k such that for every r from 0 to 2n-1 there exist j and i, k >= j > i > 2n-1, such that j - i == r ( mod (2n-1)), with (k,(2n-1))=(j,(2n-1))=(i,(2n-1)) = 1. - Amarnath Murthy, Sep 24 2003

Complement of A004773. - Reinhard Zumkeller, Aug 29 2005

Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n+2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008

Solutions to the equation x^(2*x)=3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010

Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010

First differences of A084849. - Reinhard Zumkeller, Apr 02 2011

Numbers n such that {1,2,3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011

Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012

The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013

A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013

First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013

All triangular numbers in the sequence are congruent to {3,7} mod 8. - Ivan N. Ianakiev, Nov 12 2013

Apart from the initial term, length of minimal path on a n-dimensional cubic lattice (n>1) of side length 2, until a self-avoiding walk gets stuck.  Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n-1 points, resulting in path length 4n-2 with a final step connecting the center, for a total path length of 4n-1, comprising 4n points. - Matthew Lehman, Dec 10 2013

a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014

For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and > a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..200

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - Jonathan Vos Post, Nov 24 2008

Tanya Khovanova, Recursive Sequences

William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))

William A. Stein, The modular forms database

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003

a(n) = 2*a(n-1)-a(n-2) for n>1, a(0)=3, a(1)=7. - Philippe Deléham, Nov 03 2008

a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010

a(n) = 8*n-a(n-1)+2 for n>0, a(0)=3. - Vincenzo Librandi, Nov 20 2010

a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011

a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012

a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013

a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013

a(n) = 4*n-1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014

From Ilya Gutkovskiy, Jul 29 2016: (Start)

E.g.f.: (3 + 4*x)*exp(x).

Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2)-1))/(4*sqrt(2)) = A181049. (End)

EXAMPLE

G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...

MAPLE

seq( 3+4*n, n=0..100 );

MATHEMATICA

Range[3, 500, 4] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)

4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)

PROG

(Haskell)

a004767 = (+ 3) . (* 4)

a004767_list = [3, 7 ..]  -- Reinhard Zumkeller, Oct 03 2012

(MAGMA) [4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014

(PARI) a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015

(PARI) Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016

CROSSREFS

Cf. A008586, A016813, A016825, A017629, A008545 (partial products).

Sequence in context: A103543 A172338 A189787 * A131098 A118894 A194397

Adjacent sequences:  A004764 A004765 A004766 * A004768 A004769 A004770

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 19:46 EDT 2017. Contains 287241 sequences.