|
|
A017629
|
|
a(n) = 12*n + 9.
|
|
20
|
|
|
9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
|
|
MATHEMATICA
|
LinearRecurrence[{2, -1}, {9, 21}, 60] (* Harvey P. Dale, Apr 14 2019 *)
|
|
PROG
|
(Sage) [i+9 for i in range(525) if gcd(i, 12) == 12] # Zerinvary Lajos, May 21 2009
(Haskell)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|