The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084849 a(n) = 1 + n + 2*n^2. 38
 1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009 a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010 Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016 Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 W. Burrows and C. Tuffley, Maximising common fixtures in a round robin tournament with two divisions, arXiv:1502.06664 [math.CO], 2015. Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy] Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020. Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph.D. Thesis, Waterford Institute of Technology, 2011. Eric Weisstein's World of Mathematics, Cocktail Party Graph. Eric Weisstein's World of Mathematics, Irredundant Set. Wikipedia, Alexander polynomial and Seifert surface. [See Peter Bala's comment.] Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A058331(n) + A000027(n). G.f.: (1 + x + 2*x^2)/(1 - x)^3. a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004 a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006 From Gary W. Adamson, Oct 07 2007: (Start) Row sums of triangle A131901. (a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End) Equals A134082 * [1,2,3,...]. - a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010 a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010 a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010 a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010 With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012 E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016 MAPLE A084849:=n->1+n+2*n^2: seq(A084849(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016 MATHEMATICA s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 200, 4}]; lst (* Zerinvary Lajos, Jul 11 2009 *) f[n_]:=(n*(2*n+1)+1); Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) Table[1 + n + 2 n^2, {n, 0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) LinearRecurrence[{3, -3, 1}, {4, 11, 22}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) CoefficientList[Series[(-1 - x - 2 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *) PROG (PARI) a(n)=1+n+2*n^2 \\ Charles R Greathouse IV, Sep 24 2015 (MAGMA) [1+n+2*n^2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016 CROSSREFS Cf. A000027, A000217, A001844, A004767 (first differences), A014105, A058331, A060884, A100036, A100037, A100038, A100039, A100040, A100041, A131901, A134082, A174723, A177342. Sequence in context: A038414 A008154 A008162 * A008265 A160424 A008229 Adjacent sequences:  A084846 A084847 A084848 * A084850 A084851 A084852 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 09 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 21:56 EST 2020. Contains 338755 sequences. (Running on oeis4.)