This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084849 a(n) = 1 + n + 2*n^2. 38
 1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = A058331(n) + A000027(n). a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004 Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009 a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010 Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016 Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 W. Burrows, C. Tuffley, Maximising common fixtures in a round robin tournament with two divisions, arXiv preprint arXiv:1502.06664 [math.CO], 2015. Guo-Niu Han, Enumeration of Standard Puzzles Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy] Eric Weisstein's World of Mathematics, Cocktail Party Graph Eric Weisstein's World of Mathematics, Irredundant Set Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1 + x + 2x^2)/(1 - x)^3. a(n) = ceiling((2n+1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006 Row sums of triangle A131901. A084849 = binomial transform of (1, 3, 4, 0, 0, 0,...). - Gary W. Adamson, Jul 26 2007 Equals A134082 * [1,2,3,...]. - Gary W. Adamson, Oct 07 2007 a(n) = (1 + A000217(2n-1) + A000217(2n+1))/2. - Enrique Pérez Herrero, Apr 02 2010 a(n) = (A177342(n+1) - A177342(n))/2, with n>0. - Bruno Berselli, May 19 2010 a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n>2. - Bruno Berselli, May 24 2010 a(n) = 4*n + a(n-1) - 1 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010 With an offset of 1 the generating function is 2*t^2-3*t+2, which is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1],[0,-2]]. a(n-1) = det(transpose(S)-n*S). Cf. A060884. - Peter Bala, Mar 14 2012 E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016 MAPLE A084849:=n->1+n+2*n^2: seq(A084849(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016 MATHEMATICA s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 200, 4}]; lst (* Zerinvary Lajos, Jul 11 2009 *) f[n_]:=(n*(2*n+1)+1); Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) Table[1 + n + 2 n^2, {n, 0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) LinearRecurrence[{3, -3, 1}, {4, 11, 22}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *) CoefficientList[Series[(-1 - x - 2 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *) PROG (PARI) a(n)=1+n+2*n^2 \\ Charles R Greathouse IV, Sep 24 2015 (MAGMA) [1+n+2*n^2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016 CROSSREFS Cf. A100040, A100041, A100036, A100037, A100038, A100039, A131901, A134082. Cf. A004767 (first differences), A060884, A174723. Sequence in context: A038414 A008154 A008162 * A008265 A160424 A008229 Adjacent sequences:  A084846 A084847 A084848 * A084850 A084851 A084852 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 09 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:23 EDT 2019. Contains 328252 sequences. (Running on oeis4.)