

A134082


Triangle read by rows, (n1) zeros followed by (2n, 1).


9



1, 2, 1, 0, 4, 1, 0, 0, 6, 1, 0, 0, 0, 8, 1, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 0, 14, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Row sums = (1, 3, 5, 7,...). A134082 * [1,2,3,...] = A084849: (1, 4, 11, 22, 37,...). Binomial transform of A134082 = A134083. A112295 replaces subdiagonal with (1,3,5,...)


LINKS

Table of n, a(n) for n=0..35.


FORMULA

Triangle read by rows, (n1) zeros followed by (2n, 1). As an infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (2,4,6,8,...) in the subdiagonal.
From formalism in A132382, e.g.f. = I_o[2*(u*x)^(1/2)] (1+2x) where I_o is the zeroth modified Bessel function of the first kind, i.e. I_o[2*(u*x)^(1/2)] = sum(j=0,1,...) u^j/j! * x^j/j! .  Tom Copeland, Dec 07 2007
Row polynomial e.g.f.: exp(x*y)(1+2x).  Tom Copeland, Dec 03 2013


EXAMPLE

First few rows of the triangle are:
1;
2, 1;
0, 4, 1;
0, 0, 6, 1;
0, 0, 0, 8, 1;
0, 0, 0, 0, 10, 1;
...


CROSSREFS

Cf. A112295, A084849, A134083.
Sequence in context: A053117 A121448 A019094 * A185740 A139360 A326759
Adjacent sequences: A134079 A134080 A134081 * A134083 A134084 A134085


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Oct 07 2007


STATUS

approved



