login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320260
Number of ordered pairs (j,k) with 0 < j < k < prime(n)/2 such that (j*(j+1) mod prime(n)) > (k*(k+1) mod prime(n)).
1
0, 0, 1, 1, 3, 8, 13, 10, 19, 41, 44, 70, 83, 75, 100, 143, 167, 210, 188, 225, 290, 306, 322, 401, 503, 554, 481, 541, 634, 686, 848, 858, 1048, 981, 1203, 1099, 1468, 1332, 1421, 1700, 1646, 1831, 2054, 2077, 2135, 2017, 2356, 2698, 2712, 2851, 3022, 3112, 3386, 3447, 3838, 3551, 4062, 3956, 4466, 4569
OFFSET
1,5
COMMENTS
Conjecture: Let p be a prime with p == 3 (mod 4), and let T(p) denote the number of ordered pairs (j,k) with 0 < j < k < p/2 and (j*(j+1) mod p) > (k*(k+1) mod p). Then T(p) == floor((p+1)/8) (mod 2).
LINKS
Zhi-Wei Sun, Quadratic residues and related permutations and identities, arXiv:1809.07766 [math.NT], 2018.
EXAMPLE
a(4) = 1 since prime(4) = 7 and (1*2 mod 7, 2*3 mod 7, 3*4 mod 7) = (1,6,5) with 6 > 5.
MATHEMATICA
T[p_]:=T[p]=Sum[Boole[Mod[j(j+1), p]>Mod[k(k+1), p]], {k, 2, (p-1)/2}, {j, 1, k-1}]; Table[T[Prime[n]], {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 08 2018
STATUS
approved