login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308265
Sum of the largest parts in the partitions of n into 3 parts.
2
0, 0, 1, 2, 5, 9, 15, 22, 34, 45, 62, 81, 104, 129, 163, 195, 237, 282, 333, 387, 454, 518, 596, 678, 768, 862, 973, 1080, 1205, 1335, 1475, 1620, 1786, 1947, 2130, 2319, 2520, 2727, 2959, 3185, 3437, 3696, 3969, 4249, 4558, 4860, 5192, 5532, 5888, 6252
OFFSET
1,4
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (n-i-k).
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: x^3*(1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) - a(n-6) + 2*a(n-7) + 2*a(n-8) - a(n-10) for n>10.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 1 2 5 9 15 22 34 45 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[n - i - k, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A307872.
Sequence in context: A320259 A007982 A011904 * A218914 A047809 A014126
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 17 2019
STATUS
approved