login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014126
Number of partitions of 2*n into at most 4 parts.
(Formerly N0523)
7
1, 2, 5, 9, 15, 23, 34, 47, 64, 84, 108, 136, 169, 206, 249, 297, 351, 411, 478, 551, 632, 720, 816, 920, 1033, 1154, 1285, 1425, 1575, 1735, 1906, 2087, 2280, 2484, 2700, 2928, 3169, 3422, 3689, 3969, 4263, 4571, 4894, 5231, 5584, 5952, 6336, 6736, 7153, 7586
OFFSET
0,2
COMMENTS
Bisection of A001400.
Molien series for 4-dimensional group of structure S_4 X C_2 and order 48, arising from complete weight enumerators of even trace-Hermitian self-dual additive codes over GF(4) containing the all-ones vector.
Partial sums of A156040. - Bob Selcoe, Feb 08 2014
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-686.
H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)
G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
FORMULA
G.f.: (1+x^2)/((1-x)^2*(1-x^2)*(1-x^3)). - James A. Sellers
a(n) = (1/72) * (4*n^3 + 30*n^2 + 72*n + 55 + 8*A049347(n) + 9*(-1)^n ). - Ralf Stephan, Aug 15 2013
E.g.f.: exp(-x)*(27 + 3*exp(2*x)*(55 + 106*x + 42*x^2 + 4*x^3) + 8*exp(x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/216. - Stefano Spezia, Apr 05 2023
MAPLE
with(combstruct): seq(count(Partition((2*n+4)), size=4), n=0..50); # Zerinvary Lajos, Mar 28 2008
MATHEMATICA
CoefficientList[Series[(1 + x^2) / ((1 - x)^2 (1 - x^2) (1 - x^3)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
LinearRecurrence[{2, 0, -1, -1, 0, 2, -1}, {1, 2, 5, 9, 15, 23, 34}, 50] (* Harvey P. Dale, Aug 31 2015 *)
PROG
(PARI) a(n)=(4*n^3+30*n^2+72*n+55+8*[1, -1, 0][(n%3)+1]+9*(-1)^n)/72
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved