OFFSET
0,2
COMMENTS
Bisection of A001400.
Molien series for 4-dimensional group of structure S_4 X C_2 and order 48, arising from complete weight enumerators of even trace-Hermitian self-dual additive codes over GF(4) containing the all-ones vector.
Partial sums of A156040. - Bob Selcoe, Feb 08 2014
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-686.
H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)
G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1).
FORMULA
G.f.: (1+x^2)/((1-x)^2*(1-x^2)*(1-x^3)). - James A. Sellers
a(n) = (1/72) * (4*n^3 + 30*n^2 + 72*n + 55 + 8*A049347(n) + 9*(-1)^n ). - Ralf Stephan, Aug 15 2013
E.g.f.: exp(-x)*(27 + 3*exp(2*x)*(55 + 106*x + 42*x^2 + 4*x^3) + 8*exp(x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/216. - Stefano Spezia, Apr 05 2023
MAPLE
with(combstruct): seq(count(Partition((2*n+4)), size=4), n=0..50); # Zerinvary Lajos, Mar 28 2008
MATHEMATICA
CoefficientList[Series[(1 + x^2) / ((1 - x)^2 (1 - x^2) (1 - x^3)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
LinearRecurrence[{2, 0, -1, -1, 0, 2, -1}, {1, 2, 5, 9, 15, 23, 34}, 50] (* Harvey P. Dale, Aug 31 2015 *)
PROG
(PARI) a(n)=(4*n^3+30*n^2+72*n+55+8*[1, -1, 0][(n%3)+1]+9*(-1)^n)/72
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved