login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014125 Bisection of A001400.
(Formerly N1005)
19
1, 3, 6, 11, 18, 27, 39, 54, 72, 94, 120, 150, 185, 225, 270, 321, 378, 441, 511, 588, 672, 764, 864, 972, 1089, 1215, 1350, 1495, 1650, 1815, 1991, 2178, 2376, 2586, 2808, 3042, 3289, 3549, 3822, 4109, 4410, 4725, 5055, 5400, 5760, 6136, 6528, 6936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also Schoenheim bound L_1(n,5,4).

Degrees of polynomials defined by p(n) = (x^(n+1)*p(n-1)p(n-3) + p(n-2)^2)/p(n-4), p(-4)=p(-3)=p(-2)=p(-1)=1. - Michael Somos, Jul 21 2004

Degrees of polynomial tau-functions of q-discrete Painlevé I, which generate sequence A095708 when q=2 (up to an offset of 3). - Andrew Hone, Jul 29 2004

Because of the Laurent phenomenon for the general q-discrete Painlevé I tau-function recurrence p(n) = (a*x^(n+1)*p(n-1)*p(n-3) + b*p(n-2)^2)/p(n-4), p(n) for n > -1 will always be a polynomial in x and a Laurent polynomial in a,b and the initial data p(-4),p(-3),p(-2),p(-1). - Andrew Hone, Jul 29 2004

Create the sequence 0,0,0,0,0,6,18,36,66,108,... so that the sum of three consecutive terms b(n) + b(n+1) + b(n+2) = A007531(n), with b(0)=0; then a(n) = b(n+5)/6. - J. M. Bergot, Jul 30 2013

Number of partitions of n into three kinds of part 1 and one kind of part 3. - Joerg Arndt, Sep 28 2015

First differences are A001840(k) starting with k=2; second differences are A086161(k) starting with k=1. - Bob Selcoe, Sep 28 2015

Wiener index of the cube of the path with order n+2. - Allan Bickle, Aug 01 2020

REFERENCES

W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

L. Smiley, Hidden Hexagons (preprint).

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

Joshua Alman, Cesar Cuenca, and Jiaoyang Huang, Laurent phenomenon sequences, Journal of Algebraic Combinatorics 43(3) (2015), 589-633.

Allan Bickle, Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.

Éva Czabarka, Peter Dankelmann, Trevor Olsen, László A. Székely, Wiener Index and Remoteness in Triangulations and Quadrangulations, arXiv:1905.06753 [math.CO], 2019.

S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics, 28 (2002), 119-144.

H. R. Henze and C. M. Blair, The number of structurally isomeric hydrocarbons of the ethylene series, J. Amer. Chem. Soc., 55 (1933), 680-685.

H. R. Henze, C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)

A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, arXiv:0807.2538 [nlin.SI], 2008; Proceedings of SIDE 6, Helsinki, Finland, 2004. [Set a(n)=d(n+3) on p. 8]

Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10a, lambda=3]

Index entries for two-way infinite sequences

Index entries for covering numbers

Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).

FORMULA

G.f.: 1/((1-x)^3*(1-x^3)).

a(n) = -a(-6-n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6).

The simplest recurrence is fourth order: a(n) = a(n-1) + a(n-3) - a(n-4) + n + 1, which gives the g.f.: 1/((1-x)^3*(1-x^3)), with a(-4) = a(-3) = a(-2) = a(-1) = 0.

a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + 2/(9*sqrt(3))*sin(2*Pi*n/3). - Andrew Hone, Jul 29 2004

a(n) = n^3/18 + n^2/2 + 4*n/3 + 1 + (((n+1) mod 3) - 1)/9. - same formula, simplified by Gerald Hillier, Apr 14 2015

a(n) = (2*A000027(n+1) + 3*A000292(n+1) + A049347(n-1) + 1 + 3*A000217(n+1))/9. - R. J. Mathar, Nov 16 2007

From Johannes W. Meijer, May 20 2011: (Start)

a(n) = A144677(n) + A144677(n-1) + A144677(n-2).

a(n) = A190717(n-4) + 2*A190717(n-3) + 3*A190717(n-2) + 2*A190717(n-1) + A190717(n). (End)

3*a(n) = binomial(n+4,3) - floor((n+4)/3). - Bruno Berselli, Nov 08 2013

a(n) = A000217(n+1) + a(n-3) = Sum_{j>=0, n>=3*j} (n-3*j+1)*(n-3*j+2)/2. - Bob Selcoe, Sep 27 2015

a(n) = round(((2*n+5)^3 + 3*(2*n+5)^2 - 9*(2*n+5))/144). - Giacomo Guglieri, Jun 28 2020

a(n) = floor(((n+2)^3 + 3*(n+2)^2)/18). - Allan Bickle, Aug 01 2020

EXAMPLE

Polynomials: p(0)=x+1, p(1)=x^3+x^2+1, p(2)=x^6+x^5+x^3+x^2+2x+1, ...

a(12)=185:  A000217(13)=91 + a(9)=94 == 91+55+28+10+1 = 185. - Bob Selcoe, Sep 27 2015

a(3)=11: the 11 partitions of 3 are {1a,1a,1a}, {1a,1a,1b}, {1a,1a,1c}, {1a,1b,1b}, {1a,1b,1c}, {1a,1c,1c}, {1b,1b,1b}, {1b,1b,1c}, {1b,1c,1c}, {1c,1c,1c}, {3}. - Bob Selcoe, Oct 04 2015

MAPLE

L := proc(v, k, t, l) local i, t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v, k, t). Current sequence is L_1(n, n-3, n-4, 1).

MATHEMATICA

CoefficientList[Series[1/((1 - x)^3*(1 - x^3)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 14 2015 *)

PROG

(PARI) a(n)=if(n<-5, -a(-6-n), polcoeff(1/(1-x)^3/(1-x^3)+x^n*O(x), n)) /* Michael Somos, Jul 21 2004 */

(PARI) x='x+O('x^50); Vec(1/((1-x)^3*(1-x^3))) \\ Altug Alkan, Oct 16 2015

(PARI) a(n)=(n^3 + 9*n^2 + 24*n + 19)\/18 \\ Charles R Greathouse IV, Jun 29 2020

(MAGMA) [n^3/18+n^2/2+4*n/3+1+(((n+1) mod 3)-1)/9 : n in [0..50]]; // Wesley Ivan Hurt, Apr 14 2015

(MAGMA) I:=[1, 3, 6, 11, 18, 27]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2)+2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Apr 15 2015 (Sage) [(binomial(n+4, 3) -floor((n+4)/3))/3 for n in (0..50)] # G. C. Greubel, Apr 28 2019

CROSSREFS

Cf. A000631, A014126, A095708.

A column of A036838.

Cf. A002623, A014125, A122046, A122047. - Johannes W. Meijer, May 20 2011

Cf. A000217, A001840, A086161.

Sequence in context: A010000 A183199 A172046 * A147456 A230088 A011849

Adjacent sequences:  A014122 A014123 A014124 * A014126 A014127 A014128

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Dec 24 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 06:14 EDT 2021. Contains 346368 sequences. (Running on oeis4.)