The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010000 a(0) = 1, a(n) = n^2 + 2 for n > 0. 17
1, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Least k such that A070864(k) = 2n-1. - Robert G. Wilson v and Benoit Cloitre, May 20 2002
With an offset of 3, beginning with 6 (deleting first two terms) n*(n+a(n)) + 1 is a cube = (n+1)^3: 1*(1+6) + 1 = 8, 2*(2+11) + 1 = 27, etc. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003
For n >= 2, a(n) is the maximum element in the continued fraction for Sum_{k>=1} 1/n^(2^k) (for n=2 see A006464). - Benoit Cloitre, Jun 12 2007
Equals binomial transform of [1, 2, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
Minimum Wiener index of 3-degenerate graphs with n+2 vertices. A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are maximal 3-degenerate graphs with diameter at most 2. - Allan Bickle, Oct 14 2022
a(n-1) is the number of unit triangles enclosed by the triangular spiral drawn on a isometric grid of which the n-th side has length n. The picture in the link shows how the spiral is constructed. - Bob Andriesse, Feb 14 2023
LINKS
Allan Bickle, Wiener indices of maximal k-degenerate graphs, International Journal of Mathematical Combinatorics 2 (2021) 68-79.
Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
FORMULA
a(n) = A000217(n-2) + A000217(n+1) for n > 0. - Jon Perry, Jul 23 2003
Euler transform of length 6 sequence [ 3, 0, 1, 0, 0, -1]. - Michael Somos, Aug 11 2009
From Michael Somos, Aug 11 2009: (Start)
G.f.: (1 + x^3) / (1 - x)^3.
a(n) = a(-n) for all n in Z. (End)
E.g.f.: (x*(x+1) + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = (2*n/(n+1)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(j+1/n)^(n+1), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 03 2013
Sum_{n>=0} 1/a(n) = 3/4+1/4*sqrt(2)*Pi*coth(Pi*sqrt 2)= 1.8610281... - R. J. Mathar, May 07 2024
EXAMPLE
G.f. = 1 + 3*x + 6*x^2 + 11*x^3 + 18*x^4 + 27*x^5 + 38*x^6 + 51*x^7 + 66*x^8 + ...
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = 2 + a[n - a[n - 1]]; b = Table[0, {100}]; Do[c = (a[n] + 1)/2; If[c < 101 && b[[c]] == 0, b[[c]] = n], {n, 1, 10^4}]; b
Join[{1}, Range[50]^2 + 2] (* Bruno Berselli, Feb 08 2012 *)
a[ n_] := n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 05 2015 *)
PROG
(PARI) {a(n) = n^2 + 2 - (n==0)}; /* Michael Somos, Aug 11 2009 */
(Maxima)
a(n):=if n=0 then 1 else 2*n*sum((-1)^(n-j)*binomial(n, j)*(j+1/n)^(n+1), j, 0, n)/(n+1)!; \\ Vladimir Kruchinin, Jun 03 2013
CROSSREFS
Cf. A070864. Apart from initial terms, same as A059100.
Cf. A206399.
Cf. A002061 (minimum Wiener index of 2-degenerate graphs).
Sequence in context: A140126 A140235 A224214 * A183199 A172046 A014125
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 07:06 EDT 2024. Contains 372926 sequences. (Running on oeis4.)