The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010000 a(0) = 1, a(n) = n^2 + 2 for n > 0. 17
 1, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Least k such that A070864(k) = 2n-1. - Robert G. Wilson v and Benoit Cloitre, May 20 2002 With an offset of 3, beginning with 6 (deleting first two terms) n*(n+a(n)) + 1 is a cube = (n+1)^3: 1*(1+6) + 1 = 8, 2*(2+11) + 1 = 27, etc. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003 For n >= 2, a(n) is the maximum element in the continued fraction for Sum_{k>=1} 1/n^(2^k) (for n=2 see A006464). - Benoit Cloitre, Jun 12 2007 Equals binomial transform of [1, 2, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008 Minimum Wiener index of 3-degenerate graphs with n+2 vertices. A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are maximal 3-degenerate graphs with diameter at most 2. - Allan Bickle, Oct 14 2022 a(n-1) is the number of unit triangles enclosed by the triangular spiral drawn on a isometric grid of which the n-th side has length n. The picture in the link shows how the spiral is constructed. - Bob Andriesse, Feb 14 2023 LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Allan Bickle, Wiener indices of maximal k-degenerate graphs, International Journal of Mathematical Combinatorics 2 (2021) 68-79. Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000217(n-2) + A000217(n+1) for n > 0. - Jon Perry, Jul 23 2003 Euler transform of length 6 sequence [ 3, 0, 1, 0, 0, -1]. - Michael Somos, Aug 11 2009 From Michael Somos, Aug 11 2009: (Start) G.f.: (1 + x^3) / (1 - x)^3. a(n) = a(-n) for all n in Z. (End) E.g.f.: (x*(x+1) + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012 a(n) = (2*n/(n+1)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(j+1/n)^(n+1), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 03 2013 EXAMPLE G.f. = 1 + 3*x + 6*x^2 + 11*x^3 + 18*x^4 + 27*x^5 + 38*x^6 + 51*x^7 + 66*x^8 + ... MATHEMATICA a = a = 1; a[n_] := a[n] = 2 + a[n - a[n - 1]]; b = Table[0, {100}]; Do[c = (a[n] + 1)/2; If[c < 101 && b[[c]] == 0, b[[c]] = n], {n, 1, 10^4}]; b Join[{1}, Range^2 + 2] (* Bruno Berselli, Feb 08 2012 *) a[ n_] := n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 05 2015 *) PROG (PARI) {a(n) = n^2 + 2 - (n==0)}; /* Michael Somos, Aug 11 2009 */ (Maxima) a(n):=if n=0 then 1 else 2*n*sum((-1)^(n-j)*binomial(n, j)*(j+1/n)^(n+1), j, 0, n)/(n+1)!; \\ Vladimir Kruchinin, Jun 03 2013 CROSSREFS Cf. A070864. Apart from initial terms, same as A059100. Cf. A206399. Cf. A002061 (minimum Weiner index of 2-degenerate graphs). Sequence in context: A140126 A140235 A224214 * A183199 A172046 A014125 Adjacent sequences: A009997 A009998 A009999 * A010001 A010002 A010003 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 09:23 EDT 2023. Contains 361646 sequences. (Running on oeis4.)