OFFSET
0,5
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,1,-3,3,-1).
FORMULA
a(n) = Sum_{k=0..n} floor(k^2/7).
a(n) = round((2*n^3 + 3*n^2 - 11*n)/42).
a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/42).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/42).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/42).
a(n) = a(n-7) + (n-2)*(n-4) + 3, n > 6.
G.f.: x^3*(x+1)*(x^2 - x + 1)/((x-1)^4*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). [Colin Barker, Oct 26 2012]
EXAMPLE
a(5) = 6 = 0 + 0 + 0 + 1 + 2 + 3.
MAPLE
a:= n-> round((2*n^3+3*n^2-11*n)/42): seq (a(n), n=0..50);
MATHEMATICA
LinearRecurrence[{3, -3, 1, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 1, 3, 6, 11, 18, 27, 38}, 60] (* Harvey P. Dale, Apr 12 2017 *)
PROG
(Magma) [Round((2*n^3+3*n^2-11*n)/42): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 19 2010
STATUS
approved