OFFSET
0,5
COMMENTS
T(n,k) is the number of ways of placing 1..k in n boxes such that each box contains at most one number, and numbers in adjacent boxes are in increasing order. This can be proved by observing that there are n-(k-1) ways of extending each of T(n-1,k-1). - Jimin Park, Apr 16 2023
The n-th diagonal consists of n^k. This can also be generated as the Akiyama-Tanigawa algorithm applied to the sequence binomial(n+k,k). - Shel Kaphan, May 03 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
T(n,0) = 1; T(n,k) = (n-k+1)*T(n-1,k-1) for k=1..n. - Reinhard Zumkeller, Feb 02 2014
T(n,k) = Sum_{i=0..k} binomial(k,i)*T(n-1-i,k-i). - Jimin Park, Apr 16 2023
EXAMPLE
Triangle begins
1
1 1
1 2 1
1 3 4 1
1 4 9 8 1
1 5 16 27 16 1
1 6 25 64 81 32 1
1 7 36 125 256 243 64 1
1 8 49 216 625 1024 729 128 1
1 9 64 343 1296 3125 4096 2187 256 1
1 10 81 512 2401 7776 15625 16384 6561 512 1
MAPLE
A009999 := proc(i, j) (i+1-j)^j ; end proc: # R. J. Mathar, Jan 16 2011
MATHEMATICA
Table[(i+1-j)^j, {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
PROG
(Haskell)
a009999 n k = (n + 1 - k) ^ k
a009999_row n = a009999_tabl !! n
a009999_tabl = [1] : map snd (iterate f ([1, 1], [1, 1])) where
f (us@(u:_), vs) = (us', 1 : zipWith (*) us' vs)
where us' = (u + 1) : us
-- Reinhard Zumkeller, Feb 02 2014
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
T(10,8) corrected by Reinhard Zumkeller, Feb 02 2014
STATUS
approved