login
A051128
Table T(n,k) = n^k read by upwards antidiagonals (n >= 1, k >= 1).
12
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 11, 100, 729, 4096, 16807, 46656, 78125, 65536, 19683, 1024, 1
OFFSET
1,2
COMMENTS
Sum of antidiagonals is A003101(n) for n>0. - Alford Arnold, Jan 14 2007
LINKS
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], 2003.
FORMULA
a(n) = A004736(n)^A002260(n) or ((t*t+3*t+4)/2-n)^(n-(t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012
EXAMPLE
Table begins
1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, ...
3, 9, 27, 81, 243, ...
4, 16, 64, 256, 1024, ...
MAPLE
A051128 := proc(n) # Boris Putievskiy's formula
a := floor((sqrt(8*n-7)+1)/2);
b := (a+a^2)/2-n;
c := (a-a^2)/2+n;
(b+1)^c end:
seq(A051128(n), n=1..61); # Peter Luschny, Dec 14 2012
# second Maple program:
T:= (n, k)-> n^k:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
MATHEMATICA
Table[n^(k - n + 1), {k, 1, 11}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Dec 14 2012 *)
PROG
(PARI) T(n, k) = n^k \\ Charles R Greathouse IV, Feb 09 2017
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 11 1999
STATUS
approved